IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3400-d187814.html
   My bibliography  Save this article

Performance Study of a Novel Integrated Solar Combined Cycle System

Author

Listed:
  • Liqiang Duan

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, National Thermal Power Engineering & Technology Research Center, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Zhen Wang

    (Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, National Thermal Power Engineering & Technology Research Center, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

Based on a traditional integrated solar combined cycle system, a novel integrated solar combined cycle (ISCC) system is proposed, which preferentially integrates the solar energy driven lithium bromide absorption refrigeration system that is used to cool the gas turbine inlet air in this paper. Both the Aspen Plus and EBSILON softwares are used to build the models of the overall system. Both the thermodynamic performance and economic performance of the new system are compared with those of the traditional ISCC system without the inlet air cooling process. The new system can regulate the proportions of solar energy integrated in the refrigerator and the heat recovery steam generator (HRSG) based on the daily meteorological data, and the benefits of the solar energy integrated with the absorption refrigeration are greater than with the HRSG. The results of both the typical day performance and annual performance of different systems show that the new system has higher daily and annual system thermal efficiencies (52.90% and 57.00%, respectively), higher daily and annual solar photoelectric efficiencies (31.10% and 22.31%, respectively), and higher daily and annual solar photoelectric exergy efficiencies (33.30% and 23.87%, respectively) than the traditional ISCC system. The solar energy levelized cost of electricity of the new ISCC system is 0.181 $/kW·h, which is 0.061 $/kW·h lower than that of the traditional ISCC system.

Suggested Citation

  • Liqiang Duan & Zhen Wang, 2018. "Performance Study of a Novel Integrated Solar Combined Cycle System," Energies, MDPI, vol. 11(12), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3400-:d:187814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arrieta, Felipe R. Ponce & Lora, Electo E. Silva, 2005. "Influence of ambient temperature on combined-cycle power-plant performance," Applied Energy, Elsevier, vol. 80(3), pages 261-272, March.
    2. Zhu, Guangdong & Neises, Ty & Turchi, Craig & Bedilion, Robin, 2015. "Thermodynamic evaluation of solar integration into a natural gas combined cycle power plant," Renewable Energy, Elsevier, vol. 74(C), pages 815-824.
    3. Wang, Jiangjiang & Lu, Yanchao & Yang, Ying & Mao, Tianzhi, 2016. "Thermodynamic performance analysis and optimization of a solar-assisted combined cooling, heating and power system," Energy, Elsevier, vol. 115(P1), pages 49-59.
    4. Evangelos Bellos & Christos Tzivanidis, 2017. "Optimization of a Solar-Driven Trigeneration System with Nanofluid-Based Parabolic Trough Collectors," Energies, MDPI, vol. 10(7), pages 1-31, June.
    5. Li, Yuanyuan & Yang, Yongping, 2015. "Impacts of solar multiples on the performance of integrated solar combined cycle systems with two direct steam generation fields," Applied Energy, Elsevier, vol. 160(C), pages 673-680.
    6. Montes, M.J. & Rovira, A. & Muñoz, M. & Martínez-Val, J.M., 2011. "Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors," Applied Energy, Elsevier, vol. 88(9), pages 3228-3238.
    7. Manente, Giovanni & Rech, Sergio & Lazzaretto, Andrea, 2016. "Optimum choice and placement of concentrating solar power technologies in integrated solar combined cycle systems," Renewable Energy, Elsevier, vol. 96(PA), pages 172-189.
    8. Bakos, G.C. & Parsa, D., 2013. "Technoeconomic assessment of an integrated solar combined cycle power plant in Greece using line-focus parabolic trough collectors," Renewable Energy, Elsevier, vol. 60(C), pages 598-603.
    9. Baghernejad, A. & Yaghoubi, M., 2010. "Exergy analysis of an integrated solar combined cycle system," Renewable Energy, Elsevier, vol. 35(10), pages 2157-2164.
    10. Li, Yuanyuan & Yang, Yongping, 2014. "Thermodynamic analysis of a novel integrated solar combined cycle," Applied Energy, Elsevier, vol. 122(C), pages 133-142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Najah M. Al Mhanna & Islam Al Hadidi & Sultan Al Maskari, 2024. "Simulation and Energy Analysis of Integrated Solar Combined Cycle Systems (ISCCS) Using Aspen Plus," Energies, MDPI, vol. 17(16), pages 1-14, August.
    2. Tao Yi & Ling Tong & Mohan Qiu & Jinpeng Liu, 2019. "Analysis of Driving Factors of Photovoltaic Power Generation Efficiency: A Case Study in China," Energies, MDPI, vol. 12(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dabwan, Yousef N. & Pei, Gang & Gao, Guangtao & Li, Jing & Feng, Junsheng, 2019. "Performance analysis of integrated linear fresnel reflector with a conventional cooling, heat, and power tri-generation plant," Renewable Energy, Elsevier, vol. 138(C), pages 639-650.
    2. Dabwan, Yousef N. & Gang, Pei & Li, Jing & Gao, Guangtao & Feng, Junsheng, 2018. "Development and assessment of integrating parabolic trough collectors with gas turbine trigeneration system for producing electricity, chilled water, and freshwater," Energy, Elsevier, vol. 162(C), pages 364-379.
    3. Dabwan, Yousef N. & Pei, Gang, 2020. "A novel integrated solar gas turbine trigeneration system for production of power, heat and cooling: Thermodynamic-economic-environmental analysis," Renewable Energy, Elsevier, vol. 152(C), pages 925-941.
    4. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    5. Antonio Rovira & Consuelo Sánchez & Manuel Valdés & Ruben Abbas & Rubén Barbero & María José Montes & Marta Muñoz & Javier Muñoz-Antón & Guillermo Ortega & Fernando Varela, 2018. "Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration," Energies, MDPI, vol. 11(5), pages 1-16, April.
    6. Rovira, Antonio & Abbas, Rubén & Sánchez, Consuelo & Muñoz, Marta, 2020. "Proposal and analysis of an integrated solar combined cycle with partial recuperation," Energy, Elsevier, vol. 198(C).
    7. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    8. Li, Yuanyuan & Xiong, Yamin, 2018. "Thermo-economic analysis of a novel cascade integrated solar combined cycle system," Energy, Elsevier, vol. 145(C), pages 116-127.
    9. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal & Ait-Kaci, Sabrina, 2014. "A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 223-250.
    10. Dabwan, Yousef N. & Pei, Gang & Kwan, Trevor Hocksun & Zhao, Bin, 2021. "An innovative hybrid solar preheating intercooled gas turbine using parabolic trough collectors," Renewable Energy, Elsevier, vol. 179(C), pages 1009-1026.
    11. Manente, Giovanni & Rech, Sergio & Lazzaretto, Andrea, 2016. "Optimum choice and placement of concentrating solar power technologies in integrated solar combined cycle systems," Renewable Energy, Elsevier, vol. 96(PA), pages 172-189.
    12. Shucheng Wang & Zhongguang Fu & Gaoqiang Zhang & Tianqing Zhang, 2018. "Advanced Thermodynamic Analysis Applied to an Integrated Solar Combined Cycle System," Energies, MDPI, vol. 11(6), pages 1-16, June.
    13. Rovira, Antonio & Barbero, Rubén & Montes, María José & Abbas, Rubén & Varela, Fernando, 2016. "Analysis and comparison of Integrated Solar Combined Cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems," Applied Energy, Elsevier, vol. 162(C), pages 990-1000.
    14. Li, Yuanyuan & Yang, Yongping, 2015. "Impacts of solar multiples on the performance of integrated solar combined cycle systems with two direct steam generation fields," Applied Energy, Elsevier, vol. 160(C), pages 673-680.
    15. Zhang, Zuxian & Duan, Liqiang & Wang, Zhen & Ren, Yujie, 2022. "General performance evaluation method of integrated solar combined cycle (ISCC) system," Energy, Elsevier, vol. 240(C).
    16. Zhang, Nan & Zhang, Yumeng & Duan, Liqiang & Hou, Hongjuan & Zhang, Hanfei & Zhou, Yong & Bao, Weiwei, 2023. "Combining integrated solar combined cycle with wind-PV plants to provide stable power: Operation strategy and dynamic performance study," Energy, Elsevier, vol. 284(C).
    17. Barbara Mendecka & Lidia Lombardi & Paweł Gładysz & Wojciech Stanek, 2018. "Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy," Energies, MDPI, vol. 11(4), pages 1-20, March.
    18. Alqahtani, Bandar Jubran & Patiño-Echeverri, Dalia, 2016. "Integrated Solar Combined Cycle Power Plants: Paving the way for thermal solar," Applied Energy, Elsevier, vol. 169(C), pages 927-936.
    19. Gunasekaran, S. & Mancini, N.D. & El-Khaja, R. & Sheu, E.J. & Mitsos, A., 2014. "Solar–thermal hybridization of advanced zero emissions power cycle," Energy, Elsevier, vol. 65(C), pages 152-165.
    20. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3400-:d:187814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.