Numerical model and analysis of heat transfer during microjets array impingement
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.117879
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zheng, Wandong & Li, Bojia & Zhang, Huan & You, Shijun & Li, Ying & Ye, Tianzhen, 2016. "Thermal characteristics of a glazed transpired solar collector with perforating corrugated plate in cold regions," Energy, Elsevier, vol. 109(C), pages 781-790.
- Chauhan, Ranchan & Thakur, N.S., 2014. "Investigation of the thermohydraulic performance of impinging jet solar air heater," Energy, Elsevier, vol. 68(C), pages 255-261.
- Chauhan, Ranchan & Singh, Tej & Tiwari, Avinash & Patnaik, Amar & Thakur, N.S., 2017. "Hybrid entropy – TOPSIS approach for energy performance prioritization in a rectangular channel employing impinging air jets," Energy, Elsevier, vol. 134(C), pages 360-368.
- Kim, Kyung Min & Moon, Hokyu & Park, Jun Su & Cho, Hyung Hee, 2014. "Optimal design of impinging jets in an impingement/effusion cooling system," Energy, Elsevier, vol. 66(C), pages 839-848.
- Di Marco, Paolo & Frigo, Stefano & Gabbrielli, Roberto & Pecchia, Stefano, 2016. "Mathematical modelling and energy performance assessment of air impingement drying systems for the production of tissue paper," Energy, Elsevier, vol. 114(C), pages 201-213.
- Khummongkol, D. & Khummongkol, P., 1998. "Heat transfer between an impinging air jet and an impinged water surface," Energy, Elsevier, vol. 23(3), pages 239-245.
- Alamir, M. & Witrant, E. & Della Valle, G. & Rouaud, O. & Josset, Ch. & Boillereaux, L., 2013. "Estimation of energy saving thanks to a reduced-model-based approach: Example of bread baking by jet impingement," Energy, Elsevier, vol. 53(C), pages 74-82.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wandong Zheng & Huan Zhang & Shijun You & Yindan Fu, 2017. "Experimental Investigation of the Transpired Solar Air Collectors and Metal Corrugated Packing Solar Air Collectors," Energies, MDPI, vol. 10(3), pages 1-12, March.
- Almeshaal, Mohammed & Palaniappan, Murugesan & MM, Matheswaran, 2024. "Assessment and enhancement of thermal performance for ring roughened finned jet impingement solar air heater for low-temperature applications," Energy, Elsevier, vol. 307(C).
- Chauhan, Ranchan & Singh, Tej & Thakur, N.S. & Kumar, Nitin & Kumar, Raj & Kumar, Anil, 2018. "Heat transfer augmentation in solar thermal collectors using impinging air jets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3179-3190.
- Chaurasiya, Shailendra Kumar & Singh, Satyender, 2023. "High thermal performance of the solar air heater designs triggered by improved jet stability," Renewable Energy, Elsevier, vol. 204(C), pages 532-545.
- Chauhan, Ranchan & Kim, Sung Chul, 2019. "Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 955-963.
- Chen, Xiaobin & Man, Yi & Zheng, Qifu & Hu, Yusha & Li, Jigeng & Hong, Mengna, 2019. "Industrial verification of energy saving for the single-tier cylinder based paper drying process," Energy, Elsevier, vol. 170(C), pages 261-272.
- Peng Guan & Yan-Ting Ai & Cheng-Wei Fei, 2019. "An Enhanced Flow-Thermo-Structural Modeling and Validation for the Integrated Analysis of a Film Cooling Nozzle Guide Vane," Energies, MDPI, vol. 12(14), pages 1-20, July.
- Maithani, Rajesh & Sharma, Sachin & Kumar, Anil, 2021. "Thermo-hydraulic and exergy analysis of inclined impinging jets on absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 179(C), pages 84-95.
- Zheng-Xin Wang & Dan-Dan Li & Hong-Hao Zheng, 2018. "The External Performance Appraisal of China Energy Regulation: An Empirical Study Using a TOPSIS Method Based on Entropy Weight and Mahalanobis Distance," IJERPH, MDPI, vol. 15(2), pages 1-18, January.
- Lioua Kolsi & Fatih Selimefendigil & Kaouther Ghachem & Talal Alqahtani & Salem Algarni, 2022. "Multiple Impinging Jet Cooling of a Wavy Surface by Using Double Porous Fins under Non-Uniform Magnetic Field," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
- Afaq Jasim Mahmood, 2020. "Thermal Evaluation of a Double-Pass Unglazed Solar Air Heater with Perforated Plate and Wire Mesh Layers," Sustainability, MDPI, vol. 12(9), pages 1-15, April.
- Srivastav, Ayushman & Maithani, Rajesh & Sharma, Sachin, 2024. "Investigation of heat transfer and friction characteristics of solar air heater through an array of submerged impinging jets," Renewable Energy, Elsevier, vol. 227(C).
- Chung, Heeyoon & Sohn, Ho-Seong & Park, Jun Su & Kim, Kyung Min & Cho, Hyung Hee, 2017. "Thermo-structural analysis of cracks on gas turbine vane segment having multiple airfoils," Energy, Elsevier, vol. 118(C), pages 1275-1285.
- Chauhan, Ranchan & Singh, Tej & Thakur, N.S. & Patnaik, Amar, 2016. "Optimization of parameters in solar thermal collector provided with impinging air jets based upon preference selection index method," Renewable Energy, Elsevier, vol. 99(C), pages 118-126.
- Al-damook, Amer & Khalil, Wissam Hashim, 2017. "Experimental evaluation of an unglazed solar air collector for building space heating in Iraq," Renewable Energy, Elsevier, vol. 112(C), pages 498-509.
- Ewe, Win Eng & Fudholi, Ahmad & Sopian, Kamaruzzaman & Moshery, Refat & Asim, Nilofar & Nuriana, Wahidin & Ibrahim, Adnan, 2022. "Thermo-electro-hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector," Energy, Elsevier, vol. 254(PB).
- Sciubba, Enrico, 2015. "Air-cooled gas turbine cycles – Part 1: An analytical method for the preliminary assessment of blade cooling flow rates," Energy, Elsevier, vol. 83(C), pages 104-114.
- Wang, Dengjia & Gao, Qian & Liu, Yanfeng & Wang, Yingying & Chen, Yaowen & Liu, Yuan & Liu, Jiaping, 2019. "Experimental study on heating characteristics and parameter optimization of transpired solar collectors," Applied Energy, Elsevier, vol. 238(C), pages 534-546.
- Ge, Zhaolong & Zhang, Hongwei & Zhou, Zhe & Cao, Shirong & Zhang, Di & Liu, Xiangjie & Tian, Chao, 2023. "Experimental study on the characteristics and mechanism of high-pressure water jet fracturing in high-temperature hard rocks," Energy, Elsevier, vol. 270(C).
- Salman, Mohammad & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Exergy analysis of solar heat collector with air jet impingement on dimple-shape-roughened absorber surface," Renewable Energy, Elsevier, vol. 179(C), pages 918-928.
More about this item
Keywords
Heat transfer; Heat transfer enhancement; Microjets array; Microjet impingement; Numerical modeling; Validation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309865. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.