IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics036054422402406x.html
   My bibliography  Save this article

Assessment and enhancement of thermal performance for ring roughened finned jet impingement solar air heater for low-temperature applications

Author

Listed:
  • Almeshaal, Mohammed
  • Palaniappan, Murugesan
  • MM, Matheswaran

Abstract

The current study investigates the synergetic impact of artificial roughness with fins and jet impingement on the performance of flat plate solar air heater. The impingement jet Solar Air Heater (SAH) achieves roughening through the incorporation of conical ring shapes, strategically placed between the straight fins of the absorber plate. The analytical work focuses on maximizing the thermal and effective thermal performance by considering the design parameters: ring thickness ratio (TR/DH) ranging from 0.07 to 0.13, ring diameter to thickness ratio (Do/TR) from 1.67 to 2.67, streamwise pitch to diameter ratio (X/Do) from 4.71 to 7.71, ring diameter ratio (Do/Db) from 1.30 to 2.30, and a number of fins (n) ranging from 4 to 7 based on spanwise pitch ratio (Y/Do) from 2.92 to 5.14. A MATLAB code is created to solve governing equations and validated by comparing results with existing literature. The results indicate that the new configuration of SAH is most effective up to the Reynolds number of 10850 and produces the maximum energy and thermo hydraulic efficiency is 81.4 % and 77.4 %, respectively. It enhances the thermo hydraulic performance by 15.1 % and 4.1 % compared with conventional single pass and parallel pass jet impingement SAH. The system has the capability to increase the air temperature per unit of supplied solar heat flux, is ranging between 0.006 and 0.038 Km2/W.

Suggested Citation

  • Almeshaal, Mohammed & Palaniappan, Murugesan & MM, Matheswaran, 2024. "Assessment and enhancement of thermal performance for ring roughened finned jet impingement solar air heater for low-temperature applications," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s036054422402406x
    DOI: 10.1016/j.energy.2024.132632
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422402406X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sivakandhan, C. & Arjunan, T.V. & Matheswaran, M.M., 2020. "Thermohydraulic performance enhancement of a new hybrid duct solar air heater with inclined rib roughness," Renewable Energy, Elsevier, vol. 147(P1), pages 2345-2357.
    2. Zukowski, M., 2015. "Experimental investigations of thermal and flow characteristics of a novel microjet air solar heater," Applied Energy, Elsevier, vol. 142(C), pages 10-20.
    3. Chauhan, Ranchan & Singh, Tej & Thakur, N.S. & Patnaik, Amar, 2016. "Optimization of parameters in solar thermal collector provided with impinging air jets based upon preference selection index method," Renewable Energy, Elsevier, vol. 99(C), pages 118-126.
    4. Ismail, Muhammad Imran & Yunus, Nor Alafiza & Hashim, Haslenda, 2021. "Integration of solar heating systems for low-temperature heat demand in food processing industry – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Chauhan, Ranchan & Thakur, N.S., 2014. "Investigation of the thermohydraulic performance of impinging jet solar air heater," Energy, Elsevier, vol. 68(C), pages 255-261.
    6. Sabzpooshani, M. & Mohammadi, K. & Khorasanizadeh, H., 2014. "Exergetic performance evaluation of a single pass baffled solar air heater," Energy, Elsevier, vol. 64(C), pages 697-706.
    7. Chauhan, Ranchan & Singh, Tej & Tiwari, Avinash & Patnaik, Amar & Thakur, N.S., 2017. "Hybrid entropy – TOPSIS approach for energy performance prioritization in a rectangular channel employing impinging air jets," Energy, Elsevier, vol. 134(C), pages 360-368.
    8. Singh, Satyender & Chaurasiya, Shailendra Kumar & Negi, Bharat Singh & Chander, Subhash & Nemś, Magdalena & Negi, Sushant, 2020. "Utilizing circular jet impingement to enhance thermal performance of solar air heater," Renewable Energy, Elsevier, vol. 154(C), pages 1327-1345.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chauhan, Ranchan & Singh, Tej & Thakur, N.S. & Kumar, Nitin & Kumar, Raj & Kumar, Anil, 2018. "Heat transfer augmentation in solar thermal collectors using impinging air jets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3179-3190.
    2. Chaurasiya, Shailendra Kumar & Singh, Satyender, 2023. "High thermal performance of the solar air heater designs triggered by improved jet stability," Renewable Energy, Elsevier, vol. 204(C), pages 532-545.
    3. Srivastav, Ayushman & Maithani, Rajesh & Sharma, Sachin, 2024. "Investigation of heat transfer and friction characteristics of solar air heater through an array of submerged impinging jets," Renewable Energy, Elsevier, vol. 227(C).
    4. Ewe, Win Eng & Fudholi, Ahmad & Sopian, Kamaruzzaman & Moshery, Refat & Asim, Nilofar & Nuriana, Wahidin & Ibrahim, Adnan, 2022. "Thermo-electro-hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector," Energy, Elsevier, vol. 254(PB).
    5. Łapka, Piotr & Ciepliński, Adrian & Rusowicz, Artur, 2020. "Numerical model and analysis of heat transfer during microjets array impingement," Energy, Elsevier, vol. 203(C).
    6. Mahato, M.K. & Singh, S.N., 2024. "Effect of the partial blockage in the exit of the mixing channel on thermo - Hydraulic performance of the multi – Pass jet plate solar air heater," Renewable Energy, Elsevier, vol. 222(C).
    7. Sharma, Ashutosh & Chauhan, Ranchan & Singh, Tej & Kumar, Anil & Kumar, Raj & Kumar, Anil & Sethi, Muneesh, 2017. "Optimizing discrete V obstacle parameters using a novel Entropy-VIKOR approach in a solar air flow channel," Renewable Energy, Elsevier, vol. 106(C), pages 310-320.
    8. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    9. Chauhan, Ranchan & Singh, Tej & Tiwari, Avinash & Patnaik, Amar & Thakur, N.S., 2017. "Hybrid entropy – TOPSIS approach for energy performance prioritization in a rectangular channel employing impinging air jets," Energy, Elsevier, vol. 134(C), pages 360-368.
    10. Sheikhnejad, Yahya & Gandjalikhan Nassab, Seyed Abdolreza, 2021. "Enhancement of solar chimney performance by passive vortex generator," Renewable Energy, Elsevier, vol. 169(C), pages 437-450.
    11. Bakri, Badis & Eleuch, Oumaima & Ketata, Ahmed & Driss, Slah & Driss, Zied & Benguesmia, Hani, 2018. "Study of the turbulent flow in a newly solar air heater test bench with natural and forced convection modes," Energy, Elsevier, vol. 161(C), pages 1028-1041.
    12. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    13. Chauhan, Ranchan & Kim, Sung Chul, 2019. "Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 955-963.
    14. Liaqat Hussain & Muhammad Mahabat Khan & Manzar Masud & Fawad Ahmed & Zabdur Rehman & Łukasz Amanowicz & Krzysztof Rajski, 2021. "Heat Transfer Augmentation through Different Jet Impingement Techniques: A State-of-the-Art Review," Energies, MDPI, vol. 14(20), pages 1-40, October.
    15. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    16. Nahin Tasmin & Shahjadi Hisan Farjana & Md Rashed Hossain & Santu Golder & M. A. Parvez Mahmud, 2022. "Integration of Solar Process Heat in Industries: A Review," Clean Technol., MDPI, vol. 4(1), pages 1-35, February.
    17. Hajabdollahi, Hassan, 2021. "Thermoeconomic assessment of integrated solar flat plat collector with cross flow heat exchanger as solar air heater using numerical analysis," Renewable Energy, Elsevier, vol. 168(C), pages 491-504.
    18. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Hu, Mingke & Pei, Gang & Wang, Qiliang & Li, Jing & Wang, Yunyun & Ji, Jie, 2016. "Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system," Applied Energy, Elsevier, vol. 179(C), pages 899-908.
    20. Kumar, Amit & Singh, Ajeet Pratap & Akshayveer, & Singh, O.P., 2022. "Performance characteristics of a new curved double-pass counter flow solar air heater," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s036054422402406x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.