IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v196y2022icp1048-1063.html
   My bibliography  Save this article

Energy and exergy analysis of a glazed solar preheating collector wall with non-uniform perforated corrugated plate

Author

Listed:
  • Gao, Meng
  • Fan, Jianhua
  • Furbo, Simon
  • Xiang, Yutong

Abstract

The solar preheating wall provides an effective solution to the conflict between the requirement for fresh air and the need for heat conservation in winter by preheating fresh ventilation air. In this paper, a study of the glazed solar preheating collector wall is carried out by numerical simulation with the aim of improving heat collection efficiency through structural optimization. The influence of the environment as well as its range of applications are investigated. The characteristics of the internal flow and temperature distribution are obtained to facilitate the structural analysis. The influence of air volume and structural parameters on thermal efficiency is investigated, providing a good reference for structural design optimization. In addition, it is observed that the exergy efficiency of the optimized design is 1.3 times higher than that of the conventional solar wall, while the thermal efficiency is 15% higher than traditional ones. The heat loss rate is reduced by 40% in high wind and extremely cold regions compared to that of the unglazed one. The maximum supply percentage can reach 69.4% and the temperature rise is approximately 20 °C. Finally, a parametric investigation is carried out on different functional buildings, and an optimal structure in Xi'an is given as a reference. The energy collection and transfer efficiency increase with the increase of air volume, but the energy saving rate decreases. The results indicate that this solar wall is ideal for buildings with low fresh air demand, such as single residences and small offices. It also has a considerable preheating effect on high fresh air demand ones.

Suggested Citation

  • Gao, Meng & Fan, Jianhua & Furbo, Simon & Xiang, Yutong, 2022. "Energy and exergy analysis of a glazed solar preheating collector wall with non-uniform perforated corrugated plate," Renewable Energy, Elsevier, vol. 196(C), pages 1048-1063.
  • Handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1048-1063
    DOI: 10.1016/j.renene.2022.07.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122010229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Wandong & Li, Bojia & Zhang, Huan & You, Shijun & Li, Ying & Ye, Tianzhen, 2016. "Thermal characteristics of a glazed transpired solar collector with perforating corrugated plate in cold regions," Energy, Elsevier, vol. 109(C), pages 781-790.
    2. Gadd, Henrik & Werner, Sven, 2013. "Daily heat load variations in Swedish district heating systems," Applied Energy, Elsevier, vol. 106(C), pages 47-55.
    3. Zheng, Wandong & Zhang, Huan & You, Shijun & Fu, Yindan & Zheng, Xuejing, 2017. "Thermal performance analysis of a metal corrugated packing solar air collector in cold regions," Applied Energy, Elsevier, vol. 203(C), pages 938-947.
    4. Bahrehmand, D. & Ameri, M. & Gholampour, M., 2015. "Energy and exergy analysis of different solar air collector systems with forced convection," Renewable Energy, Elsevier, vol. 83(C), pages 1119-1130.
    5. Farahat, S. & Sarhaddi, F. & Ajam, H., 2009. "Exergetic optimization of flat plate solar collectors," Renewable Energy, Elsevier, vol. 34(4), pages 1169-1174.
    6. Li, Bojia & You, Shijun & Ye, Tianzhen & Zhang, Huan & Li, Xianli & Li, Chao, 2014. "Mathematical modeling and experimental verification of vacuum glazed transpired solar collector with slit-like perforations," Renewable Energy, Elsevier, vol. 69(C), pages 43-49.
    7. Bahrehmand, D. & Ameri, M., 2015. "Energy and exergy analysis of different solar air collector systems with natural convection," Renewable Energy, Elsevier, vol. 74(C), pages 357-368.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    2. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    3. Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
    4. Zheng, Jiayi & Wang, Jing & Chen, Taotao & Yu, Yanshun, 2020. "Solidification performance of heat exchanger with tree-shaped fins," Renewable Energy, Elsevier, vol. 150(C), pages 1098-1107.
    5. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    6. Debnath, Suman & Das, Biplab & Randive, P.R. & Pandey, K.M., 2018. "Performance analysis of solar air collector in the climatic condition of North Eastern India," Energy, Elsevier, vol. 165(PB), pages 281-298.
    7. Camilo Ramirez & Mario Palacio & Mauricio Carmona, 2020. "Reduced Model and Comparative Analysis of the Thermal Performance of Indirect Solar Dryer with and without PCM," Energies, MDPI, vol. 13(20), pages 1-18, October.
    8. Wandong Zheng & Huan Zhang & Shijun You & Yindan Fu, 2017. "Experimental Investigation of the Transpired Solar Air Collectors and Metal Corrugated Packing Solar Air Collectors," Energies, MDPI, vol. 10(3), pages 1-12, March.
    9. Bhuvad, Sushant Suresh & Azad, Rajnish & Lanjewar, Atul, 2022. "Thermal performance analysis of apex-up discrete arc ribs solar air heater-an experimental study," Renewable Energy, Elsevier, vol. 185(C), pages 403-415.
    10. Elbreki, A.M. & Alghoul, M.A. & Al-Shamani, A.N. & Ammar, A.A. & Yegani, Bita & Aboghrara, Alsanossi M. & Rusaln, M.H. & Sopian, K., 2016. "The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 602-647.
    11. Choi, Youngjin, 2020. "Performance evaluation of air and liquid-based solar heating systems in various climates in East Asia," Renewable Energy, Elsevier, vol. 162(C), pages 685-700.
    12. Mortazavi, Arsham & Ameri, Mehran, 2018. "Conventional and advanced exergy analysis of solar flat plate air collectors," Energy, Elsevier, vol. 142(C), pages 277-288.
    13. Wang, Yang & Shukla, Ashish & Liu, Shuli, 2017. "A state of art review on methodologies for heat transfer and energy flow characteristics of the active building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1102-1116.
    14. Kumar, P. Manoj & Mylsamy, K., 2020. "A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater," Renewable Energy, Elsevier, vol. 162(C), pages 662-676.
    15. Baibhaw Kumar & Gábor Szepesi & Zoltán Szamosi & Gyula Krámer, 2023. "Analysis of a Combined Solar Drying System for Wood-Chips, Sawdust, and Pellets," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    16. Kareem, M.W. & Habib, Khairul & Ruslan, M.H. & Saha, Bidyut Baran, 2017. "Thermal performance study of a multi-pass solar air heating collector system for drying of Roselle (Hibiscus sabdariffa)," Renewable Energy, Elsevier, vol. 113(C), pages 281-292.
    17. Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
    18. Ural, Tolga, 2019. "Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses," Energy, Elsevier, vol. 188(C).
    19. Xu, Wei & Liu, Changping & Li, Angui & Li, Ji & Qiao, Biao, 2020. "Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China," Renewable Energy, Elsevier, vol. 146(C), pages 2124-2133.
    20. Liu, He & Tian, You & Liu, Jia'ao & Zhang, Dongwei & Wu, Xuehong & Li, Zengyao, 2023. "Performance analysis of solar drying system with sunlight transparent thermally insulating aerogels," Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1048-1063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.