IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v203y2020ics0360544220309518.html
   My bibliography  Save this article

Analysis of operational data from a district cooling system and its connected buildings

Author

Listed:
  • Jangsten, Maria
  • Lindholm, Torbjörn
  • Dalenbäck, Jan-Olof

Abstract

District cooling systems are likely to become more common as the cooling demands in cities increase. Their performance is often challenged by low temperature differences between the supply and return water, called low delta-T. Few previous studies have investigated low delta-Ts in district cooling systems with heat exchangers separating the distribution system and the connected buildings, which therefore is the objective of this study. The study is based on an analysis of operational data from both district cooling provider and 37 of the connected buildings chilled water systems, collected from the energy transfer stations during spring and summer of 2018. The design delta-T in the district cooling system is 10 °C, while the actual delta-T varies between 6 and 8 °C. The study shows the main causes to the low delta-T are the following: operation in the saturation zone; too low building chilled water return temperature; too low temperature approach of the heat exchanger’s supply streams and non-optimized supply temperatures in the buildings. Potential solutions to resolve the low delta-T include adjusting the supply temperature setpoint on the secondary side; restricting the flow on the primary side; providing economic incentives for the district cooling customers and ensuring compliance with the design guidelines.

Suggested Citation

  • Jangsten, Maria & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2020. "Analysis of operational data from a district cooling system and its connected buildings," Energy, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309518
    DOI: 10.1016/j.energy.2020.117844
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220309518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117844?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Zhenjun & Wang, Shengwei, 2011. "Enhancing the performance of large primary-secondary chilled water systems by using bypass check valve," Energy, Elsevier, vol. 36(1), pages 268-276.
    2. Gao, Dian-ce & Wang, Shengwei & Shan, Kui, 2016. "In-situ implementation and evaluation of an online robust pump speed control strategy for avoiding low delta-T syndrome in complex chilled water systems of high-rise buildings," Applied Energy, Elsevier, vol. 171(C), pages 541-554.
    3. Gang, Wenjie & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2016. "District cooling systems: Technology integration, system optimization, challenges and opportunities for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 253-264.
    4. Jangsten, Maria & Filipsson, Peter & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2020. "High Temperature District Cooling: Challenges and Possibilities Based on an Existing District Cooling System and its Connected Buildings," Energy, Elsevier, vol. 199(C).
    5. Gao, Dian-ce & Wang, Shengwei & Sun, Yongjun & Xiao, Fu, 2012. "Diagnosis of the low temperature difference syndrome in the chilled water system of a super high-rise building: A case study," Applied Energy, Elsevier, vol. 98(C), pages 597-606.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanislav Chicherin & Andrey Zhuikov & Lyazzat Junussova, 2023. "District Heating for Poorly Insulated Residential Buildings—Comparing Results of Visual Study, Thermography, and Modeling," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    2. Neri, Manfredi & Guelpa, Elisa & Verda, Vittorio, 2022. "Design and connection optimization of a district cooling network: Mixed integer programming and heuristic approach," Applied Energy, Elsevier, vol. 306(PA).
    3. Chicherin, Stanislav & Anvari-Moghaddam, Amjad, 2021. "Adjusting heat demands using the operational data of district heating systems," Energy, Elsevier, vol. 235(C).
    4. Coccia, Gianluca & Mugnini, Alice & Polonara, Fabio & Arteconi, Alessia, 2021. "Artificial-neural-network-based model predictive control to exploit energy flexibility in multi-energy systems comprising district cooling," Energy, Elsevier, vol. 222(C).
    5. Salah Vaisi & Saleh Mohammadi & Kyoumars Habibi, 2021. "Heat Mapping, a Method for Enhancing the Sustainability of the Smart District Heat Networks," Energies, MDPI, vol. 14(17), pages 1-17, September.
    6. Chicherin, Stanislav & Starikov, Aleksander & Zhuikov, Andrey, 2022. "Justifying network reconstruction when switching to low temperature district heating," Energy, Elsevier, vol. 248(C).
    7. Jangsten, Maria & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2022. "District cooling substation design and control to achieve high return temperatures," Energy, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jangsten, Maria & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2022. "District cooling substation design and control to achieve high return temperatures," Energy, Elsevier, vol. 251(C).
    2. Gao, Dian-ce & Wang, Shengwei & Shan, Kui & Yan, Chengchu, 2016. "A system-level fault detection and diagnosis method for low delta-T syndrome in the complex HVAC systems," Applied Energy, Elsevier, vol. 164(C), pages 1028-1038.
    3. Gao, Dian-ce & Wang, Shengwei & Shan, Kui, 2016. "In-situ implementation and evaluation of an online robust pump speed control strategy for avoiding low delta-T syndrome in complex chilled water systems of high-rise buildings," Applied Energy, Elsevier, vol. 171(C), pages 541-554.
    4. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).
    5. Zhang, Wei & Hong, Wenpeng & Jin, Xu, 2022. "Research on performance and control strategy of multi-cold source district cooling system," Energy, Elsevier, vol. 239(PB).
    6. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    7. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    8. Mika Fabricius & Daniel Øland Tarp & Thomas Wehl Rasmussen & Ahmad Arabkoohsar, 2020. "Utilization of Excess Production of Waste-Fired CHP Plants for District Cooling Supply, an Effective Solution for a Serious Challenge," Energies, MDPI, vol. 13(13), pages 1-21, June.
    9. Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.
    10. Hu, Jianjun & Xie, Heping & Li, Cunbao & Liu, Guikang, 2024. "Evolution mechanism of permeability of hot dry rock under coupled effect of thermal fatigue and seawater interaction during coastal geothermal development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Luo, Jianing & Li, Hangxin & Wang, Shengwei, 2022. "A quantitative reliability assessment and risk quantification method for microgrids considering supply and demand uncertainties," Applied Energy, Elsevier, vol. 328(C).
    12. Huang, Z.F. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2023. "Development of a novel grid-free district cooling system considering blockchain-based demand response management," Applied Energy, Elsevier, vol. 342(C).
    13. Shunian Qiu & Zhenhai Li & Delong Wang & Zhengwei Li & Yinying Tao, 2022. "Active Optimization of Chilled Water Pump Running Number: Engineering Practice Validation," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    14. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    15. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    16. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu, 2023. "Globally optimal control of hybrid chilled water plants integrated with small-scale thermal energy storage for energy-efficient operation," Energy, Elsevier, vol. 262(PA).
    17. Zabala, Laura & Febres, Jesus & Sterling, Raymond & López, Susana & Keane, Marcus, 2020. "Virtual testbed for model predictive control development in district cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    18. Deng, Na & He, Guansong & Gao, Yuan & Yang, Bin & Zhao, Jun & He, Shunming & Tian, Xue, 2017. "Comparative analysis of optimal operation strategies for district heating and cooling system based on design and actual load," Applied Energy, Elsevier, vol. 205(C), pages 577-588.
    19. Charlesworth, S.M. & Faraj-Llyod, A.S. & Coupe, S.J., 2017. "Renewable energy combined with sustainable drainage: Ground source heat and pervious paving," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 912-919.
    20. Xuefeng, Liu & Jinping, Liu & Zhitao, Lu & Kongzu, Xing & Yuebang, Mai, 2015. "Diversity of energy-saving control strategy for a parallel chilled water pump based on variable differential pressure control in an air-conditioning system," Energy, Elsevier, vol. 88(C), pages 718-733.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.