IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223033066.html
   My bibliography  Save this article

An optimization study of passive flow control mechanism for a seashell-shaped wind turbine

Author

Listed:
  • Hamid, Hossam
  • Mohamed Abd El Maksoud, Rafea

Abstract

Small wind turbines have a lot of promise in areas that are remote from the power grid. For such small-scale applications, such as off-grid electricity, a spiral wind turbine (SWT), a novel type of horizontal-axis wind turbine, may be employed. Placing wind turbines within a duct is one potential method for increasing the efficiency of wind energy harvesting in low-wind urban locations. In this work, a shroud with a flange at its outlet is created using an optimization approach that attempts to maximize the coefficient of power (CP), which improves SWT performance. An evolutionary algorithm over a Kriging interpolative model serves as the optimizer in use. The shroud's shape is determined using a series of straight lines. Using the commercial code program ANSYS-FLUENT, the Reynolds-averaged Navier-Stokes (RANS) equations are solved along with the SST k–ω turbulence model to determine the turbine CP. The computational results are validated and confirmed with previously published results. The optimal shroud design introduced significant improvements in the CP when applied to the SWT, resulting in a maximum CP of 0.967 (at λ = 3.25), which is 3.6 times the maximum CP of the bare SWT (CP = 0.2668 at λ = 2.5).

Suggested Citation

  • Hamid, Hossam & Mohamed Abd El Maksoud, Rafea, 2024. "An optimization study of passive flow control mechanism for a seashell-shaped wind turbine," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033066
    DOI: 10.1016/j.energy.2023.129912
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    2. Hashem, I. & Mohamed, M.H., 2018. "Aerodynamic performance enhancements of H-rotor Darrieus wind turbine," Energy, Elsevier, vol. 142(C), pages 531-545.
    3. Refaie, Abdelaziz G. & Hameed, H.S. Abdel & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Comparative investigation of the aerodynamic performance for several Shrouded Archimedes Spiral Wind Turbines," Energy, Elsevier, vol. 239(PC).
    4. Dessoky, Amgad & Bangga, Galih & Lutz, Thorsten & Krämer, Ewald, 2019. "Aerodynamic and aeroacoustic performance assessment of H-rotor darrieus VAWT equipped with wind-lens technology," Energy, Elsevier, vol. 175(C), pages 76-97.
    5. Hashem, I. & Mohamed, M.H. & Hafiz, A.A., 2017. "Aero-acoustics noise assessment for Wind-Lens turbine," Energy, Elsevier, vol. 118(C), pages 345-368.
    6. Liu, Yingyi & Yoshida, Shigeo, 2015. "An extension of the Generalized Actuator Disc Theory for aerodynamic analysis of the diffuser-augmented wind turbines," Energy, Elsevier, vol. 93(P2), pages 1852-1859.
    7. Khamlaj, Tariq Abdulsalam & Rumpfkeil, Markus Peer, 2018. "Analysis and optimization of ducted wind turbines," Energy, Elsevier, vol. 162(C), pages 1234-1252.
    8. Ke Song & Huiting Huan & Yuchi Kang, 2022. "Aerodynamic Performance and Wake Characteristics Analysis of Archimedes Spiral Wind Turbine Rotors with Different Blade Angle," Energies, MDPI, vol. 16(1), pages 1-18, December.
    9. Abdel Hameed, Hossam S. & Hashem, Islam & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Shape optimization of a shrouded Archimedean-spiral type wind turbine for small-scale applications," Energy, Elsevier, vol. 263(PB).
    10. Refaie, Abdelaziz G. & Abdel Hameed, H.S. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2021. "Qualitative and quantitative assessments of an Archimedes Spiral Wind Turbine performance augmented by A concentrator," Energy, Elsevier, vol. 231(C).
    11. Heikal, Hasim A. & Abu-Elyazeed, Osayed S.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Maged M.S., 2018. "On the actual power coefficient by theoretical developing of the diffuser flange of wind-lens turbine," Renewable Energy, Elsevier, vol. 125(C), pages 295-305.
    12. Kamal, Ahmed M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Blade design effect on Archimedes Spiral Wind Turbine performance: Experimental and numerical evaluations," Energy, Elsevier, vol. 250(C).
    13. Balduzzi, Francesco & Bianchini, Alessandro & Carnevale, Ennio Antonio & Ferrari, Lorenzo & Magnani, Sandro, 2012. "Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building," Applied Energy, Elsevier, vol. 97(C), pages 921-929.
    14. Bontempo, R. & Manna, M., 2014. "Performance analysis of open and ducted wind turbines," Applied Energy, Elsevier, vol. 136(C), pages 405-416.
    15. Nawar, Mohamed A.A. & Hameed, H.S. Abdel & Ramadan, A. & Attai, Youssef A. & Mohamed, M.H., 2021. "Experimental and numerical investigations of the blade design effect on Archimedes Spiral Wind Turbine performance," Energy, Elsevier, vol. 223(C).
    16. Kyung Chun Kim & Ho Seong Ji & Yoon Kee Kim & Qian Lu & Joon Ho Baek & Rinus Mieremet, 2014. "Experimental and Numerical Study of the Aerodynamic Characteristics of an Archimedes Spiral Wind Turbine Blade," Energies, MDPI, vol. 7(12), pages 1-22, November.
    17. Liu, Jie & Song, Mengxuan & Chen, Kai & Wu, Bingheng & Zhang, Xing, 2016. "An optimization methodology for wind lens profile using Computational Fluid Dynamics simulation," Energy, Elsevier, vol. 109(C), pages 602-611.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdel Hameed, Hossam S. & Hashem, Islam & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Shape optimization of a shrouded Archimedean-spiral type wind turbine for small-scale applications," Energy, Elsevier, vol. 263(PB).
    2. Ke Song & Huiting Huan & Yuchi Kang, 2022. "Aerodynamic Performance and Wake Characteristics Analysis of Archimedes Spiral Wind Turbine Rotors with Different Blade Angle," Energies, MDPI, vol. 16(1), pages 1-18, December.
    3. Kamal, Ahmed M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Archimedes Spiral Wind Turbine performance study using different aerofoiled blade profiles: Experimental and numerical analyses," Energy, Elsevier, vol. 262(PB).
    4. Kamal, Ahmed M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Blade design effect on Archimedes Spiral Wind Turbine performance: Experimental and numerical evaluations," Energy, Elsevier, vol. 250(C).
    5. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Mohammad Hassan Ranjbar & Behnam Rafiei & Seyyed Abolfazl Nasrazadani & Kobra Gharali & Madjid Soltani & Armughan Al-Haq & Jatin Nathwani, 2021. "Power Enhancement of a Vertical Axis Wind Turbine Equipped with an Improved Duct," Energies, MDPI, vol. 14(18), pages 1-16, September.
    7. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    8. Refaie, Abdelaziz G. & Hameed, H.S. Abdel & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2022. "Comparative investigation of the aerodynamic performance for several Shrouded Archimedes Spiral Wind Turbines," Energy, Elsevier, vol. 239(PC).
    9. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Majidi, Sahand & Mojaddam, Mohammad, 2023. "Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient," Energy, Elsevier, vol. 284(C).
    10. Refaie, Abdelaziz G. & Abdel Hameed, H.S. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2021. "Qualitative and quantitative assessments of an Archimedes Spiral Wind Turbine performance augmented by A concentrator," Energy, Elsevier, vol. 231(C).
    11. Leloudas, Stavros N. & Lygidakis, Georgios N. & Eskantar, Alexandros I. & Nikolos, Ioannis K., 2020. "A robust methodology for the design optimization of diffuser augmented wind turbine shrouds," Renewable Energy, Elsevier, vol. 150(C), pages 722-742.
    12. Shahzad Ali, Qazi & Kim, Man-Hoe, 2022. "Quantifying impacts of shell augmentation on power output of airborne wind energy system at elevated heights," Energy, Elsevier, vol. 239(PA).
    13. Koichi Watanabe & Yuji Ohya & Takanori Uchida, 2019. "Power Output Enhancement of a Ducted Wind Turbine by Stabilizing Vortices around the Duct," Energies, MDPI, vol. 12(16), pages 1-17, August.
    14. Saleem, Arslan & Kim, Man-Hoe, 2019. "Performance of buoyant shell horizontal axis wind turbine under fluctuating yaw angles," Energy, Elsevier, vol. 169(C), pages 79-91.
    15. Aitor Arzuaga & Asier Estivariz & Oihan Fernández & Kristian Gubía & Ander Plaza & Gonzalo Abad & David Cabezuelo Romero, 2023. "Low-Cost Maximum Power Point Tracking Strategy and Protection Circuit Applied to an Ayanz Wind Turbine with Screw Blades," Energies, MDPI, vol. 16(17), pages 1-24, August.
    16. Kun Wang & Li Zou & Aimin Wang & Peidong Zhao & Yichen Jiang, 2020. "Wind Tunnel Study on Wake Instability of Twin H-Rotor Vertical-Axis Turbines," Energies, MDPI, vol. 13(17), pages 1-18, August.
    17. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    18. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    19. Khamlaj, Tariq Abdulsalam & Rumpfkeil, Markus Peer, 2018. "Analysis and optimization of ducted wind turbines," Energy, Elsevier, vol. 162(C), pages 1234-1252.
    20. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.