IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v199y2020ics036054422030551x.html
   My bibliography  Save this article

Forecast of coal consumption in Gansu Province based on Grey-Markov chain model

Author

Listed:
  • Jia, Zong-qian
  • Zhou, Zhi-fang
  • Zhang, Hong-jie
  • Li, Bo
  • Zhang, You-xian

Abstract

Coal is not only the most important primary energy in China,but also the most stable and safe energy. Accurate prediction of coal consumption can promote the adjustment of the coal industrial structure, accelerate the coal industry to achieve high-quality development,it also provides an effective decision-making basis for the formulation of medium-and long-term coal industry development strategy. Therefore, the prediction of coal consumption has become extremely essential and urgent. In this paper,the coal consumption of Gansu in the past 20 years from 1999 to 2018 is taken as the basic data. First,the GM (1,1) forecasting model of coal consumption in Gansu was established. Based on the forecast of the coal consumption of Gansu in the past two decades,the accuracy of the model was tested. The results show that the predicted average relative error was 0.08881,and the GM(1,1) model was barely qualified with better forecasting accuracy, which is suitable for medium and long-term coal consumption forecast. Subsequently,the Markov chain prediction method was adopted to correct the GM (1,1) model,and the accuracy of the modified model was tested. The results indicate that after correcting the GM (1,1) model with Markov chain,the predicted average relative error was 0.04454,far less than before the correction,and the predicted accuracy was significantly enhanced. Finally,the Grey-Markov chain model was employed to predict the coal consumption in Gansu from 2020 to 2035,and the forecasting process was also analyzed. In addition, choose to use different scenarios to predict coal consumption, then the prediction results obtained by the two methods are compared.

Suggested Citation

  • Jia, Zong-qian & Zhou, Zhi-fang & Zhang, Hong-jie & Li, Bo & Zhang, You-xian, 2020. "Forecast of coal consumption in Gansu Province based on Grey-Markov chain model," Energy, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:energy:v:199:y:2020:i:c:s036054422030551x
    DOI: 10.1016/j.energy.2020.117444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030551X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Chiun-Sin & Liou, Fen-May & Huang, Chih-Pin, 2011. "Grey forecasting model for CO2 emissions: A Taiwan study," Applied Energy, Elsevier, vol. 88(11), pages 3816-3820.
    2. Huiming Duan & Guang Rong Lei & Kailiang Shao, 2018. "Forecasting Crude Oil Consumption in China Using a Grey Prediction Model with an Optimal Fractional-Order Accumulating Operator," Complexity, Hindawi, vol. 2018, pages 1-12, August.
    3. Zeng, Bo & Li, Chuan, 2016. "Forecasting the natural gas demand in China using a self-adapting intelligent grey model," Energy, Elsevier, vol. 112(C), pages 810-825.
    4. Kumar, Ujjwal & Jain, V.K., 2010. "Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India," Energy, Elsevier, vol. 35(4), pages 1709-1716.
    5. Wei, Sun & Yanfeng, Xu, 2017. "Research on China's energy supply and demand using an improved Grey-Markov chain model based on wavelet transform," Energy, Elsevier, vol. 118(C), pages 969-984.
    6. Yildirim, Ertugrul & Aslan, Alper & Ozturk, Ilhan, 2012. "Coal consumption and industrial production nexus in USA: Cointegration with two unknown structural breaks and causality approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6123-6127.
    7. Ding, Song, 2018. "A novel self-adapting intelligent grey model for forecasting China's natural-gas demand," Energy, Elsevier, vol. 162(C), pages 393-407.
    8. Satti, Saqlain Latif & Hassan, Muhammad Shahid & Mahmood, Haider & Shahbaz, Muhammad, 2014. "Coal consumption: An alternate energy resource to fuel economic growth in Pakistan," Economic Modelling, Elsevier, vol. 36(C), pages 282-287.
    9. Apergis, Nicholas & Ewing, Bradley T. & Payne, James E., 2017. "Introduction: Symposium on Energy Sector Convergence," Energy Economics, Elsevier, vol. 62(C), pages 335-337.
    10. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    11. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
    12. Wu, Lifeng & Gao, Xiaohui & Xiao, Yanli & Yang, Yingjie & Chen, Xiangnan, 2018. "Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China," Energy, Elsevier, vol. 157(C), pages 327-335.
    13. Lin, Jiang & Fridley, David & Lu, Hongyou & Price, Lynn & Zhou, Nan, 2018. "Has coal use peaked in China: Near-term trends in China's coal consumption," Energy Policy, Elsevier, vol. 123(C), pages 208-214.
    14. Pan Lingying, & Kui, Zhou & Weiqi, Li & Fuyuan, Yang & Zheng, Li, 2019. "Subsidy policy discussion on the hydroelectric power substitution for scattered coal consumption: A case study of Sichuan Province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 539-549.
    15. Pao, Hsiao-Tien & Fu, Hsin-Chia & Tseng, Cheng-Lung, 2012. "Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model," Energy, Elsevier, vol. 40(1), pages 400-409.
    16. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    17. Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2015. "A comparative study on prediction methods for China's medium- and long-term coal demand," Energy, Elsevier, vol. 93(P2), pages 1671-1683.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Xiaoyi & Wu, Dongdong & Yan, Yabo, 2023. "Prediction of electricity consumption based on GM(1,Nr) model in Jiangsu province, China," Energy, Elsevier, vol. 262(PA).
    2. Xiong, Xin & Hu, Xi & Tian, Tian & Guo, Huan & Liao, Han, 2022. "A novel Optimized initial condition and Seasonal division based Grey Seasonal Variation Index model for hydropower generation," Applied Energy, Elsevier, vol. 328(C).
    3. Xiong, Xin & Hu, Xi & Guo, Huan, 2021. "A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption," Energy, Elsevier, vol. 234(C).
    4. Yi Liu & Jun He & Yu Wang & Zong Liu & Lixun He & Yanyang Wang, 2023. "Short-Term Wind Power Prediction Based on CEEMDAN-SE and Bidirectional LSTM Neural Network with Markov Chain," Energies, MDPI, vol. 16(14), pages 1-25, July.
    5. Geng Wu & Yi-Chung Hu & Yu-Jing Chiu & Shu-Ju Tsao, 2023. "A new multivariate grey prediction model for forecasting China’s regional energy consumption," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4173-4193, May.
    6. Chen, Hai-Bao & Pei, Ling-Ling & Zhao, Yu-Feng, 2021. "Forecasting seasonal variations in electricity consumption and electricity usage efficiency of industrial sectors using a grey modeling approach," Energy, Elsevier, vol. 222(C).
    7. Wang, Delu & Tian, Cuicui & Mao, Jinqi & Chen, Fan, 2023. "Forecasting coal demand in key coal consuming industries based on the data-characteristic-driven decomposition ensemble model," Energy, Elsevier, vol. 282(C).
    8. Cui, Huixia & Chen, Xiangyong & Guo, Ming & Jiao, Yang & Cao, Jinde & Qiu, Jianlong, 2023. "A distribution center location optimization model based on minimizing operating costs under uncertain demand with logistics node capacity scalability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    9. Duan, Huiming & Pang, Xinyu, 2021. "A multivariate grey prediction model based on energy logistic equation and its application in energy prediction in China," Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Peng Zhang & Xin Ma & Kun She, 2019. "Forecasting Japan’s Solar Energy Consumption Using a Novel Incomplete Gamma Grey Model," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    3. Duan, Huiming & Pang, Xinyu, 2021. "A multivariate grey prediction model based on energy logistic equation and its application in energy prediction in China," Energy, Elsevier, vol. 229(C).
    4. Luo, Xilin & Duan, Huiming & He, Leiyuhang, 2020. "A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy," Energy, Elsevier, vol. 205(C).
    5. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
    6. Zhou, Weijie & Wu, Xiaoli & Ding, Song & Pan, Jiao, 2020. "Application of a novel discrete grey model for forecasting natural gas consumption: A case study of Jiangsu Province in China," Energy, Elsevier, vol. 200(C).
    7. Ma, Xin & Deng, Yanqiao & Ma, Minda, 2024. "A novel kernel ridge grey system model with generalized Morlet wavelet and its application in forecasting natural gas production and consumption," Energy, Elsevier, vol. 287(C).
    8. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    9. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    10. Qiao, Hui & Chen, Siyu & Dong, Xiucheng & Dong, Kangyin, 2019. "Has China's coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity," Energy Economics, Elsevier, vol. 84(C).
    11. Ding, Song, 2018. "A novel self-adapting intelligent grey model for forecasting China's natural-gas demand," Energy, Elsevier, vol. 162(C), pages 393-407.
    12. Yi-Chung Hu & Peng Jiang & Jung-Fa Tsai & Ching-Ying Yu, 2021. "An Optimized Fractional Grey Prediction Model for Carbon Dioxide Emissions Forecasting," IJERPH, MDPI, vol. 18(2), pages 1-12, January.
    13. Huiming Duan & Xinping Xiao, 2019. "A Multimode Dynamic Short-Term Traffic Flow Grey Prediction Model of High-Dimension Tensors," Complexity, Hindawi, vol. 2019, pages 1-18, June.
    14. Wang, Zheng-Xin & Wang, Zhi-Wei & Li, Qin, 2020. "Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors," Energy, Elsevier, vol. 200(C).
    15. Lu, Hongfang & Ma, Xin & Azimi, Mohammadamin, 2020. "US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model," Energy, Elsevier, vol. 194(C).
    16. Peng Zhang & Xin Ma & Kun She, 2019. "A Novel Power-Driven Grey Model with Whale Optimization Algorithm and Its Application in Forecasting the Residential Energy Consumption in China," Complexity, Hindawi, vol. 2019, pages 1-22, November.
    17. Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & A. Wood, David, 2021. "Global natural gas demand to 2025: A learning scenario development model," Energy, Elsevier, vol. 224(C).
    18. Xu, Ning & Dang, Yaoguo & Gong, Yande, 2017. "Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China," Energy, Elsevier, vol. 118(C), pages 473-480.
    19. Shaikh, Faheemullah & Ji, Qiang & Shaikh, Pervez Hameed & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2017. "Forecasting China’s natural gas demand based on optimised nonlinear grey models," Energy, Elsevier, vol. 140(P1), pages 941-951.
    20. Deng, Yanqiao & Ma, Xin & Zhang, Peng & Cai, Yubin, 2022. "Multi-step ahead forecasting of daily urban gas load in Chengdu using a Tanimoto kernel-based NAR model and Whale optimization," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:199:y:2020:i:c:s036054422030551x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.