IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v610y2023ics0378437122009505.html
   My bibliography  Save this article

A distribution center location optimization model based on minimizing operating costs under uncertain demand with logistics node capacity scalability

Author

Listed:
  • Cui, Huixia
  • Chen, Xiangyong
  • Guo, Ming
  • Jiao, Yang
  • Cao, Jinde
  • Qiu, Jianlong

Abstract

Logistics center location optimization is one of the core issues in the study of logistics networks. A sensible logistics center distribution can improve the efficiency of goods transportation and the operation efficiency of logistics enterprises. In this paper, we study the problem of optimizing the location of logistics distribution centers in logistics networks with the objective of minimizing the operating costs of logistics distribution centers. Then, we presents a distribution center location optimization model based on minimizing operating costs under uncertain demand with logistics node capacity scalability. Firstly, the future goods quantity prediction data of each node is obtained through the grey-residual Markov chain prediction model. Then, a logistics center location optimization model with three node expansion mechanisms is developed with the objective of minimizing the objective function. Finally, by using the forecast data of goods demand obtained by the grey-residual Markov chain prediction method, we conducted simulation experiments on the cost-minimizing logistics center location optimization model under three different node expansion methods. The corresponding simulation results are obtained by particle swarm optimization algorithm to prove the effectiveness of the model.

Suggested Citation

  • Cui, Huixia & Chen, Xiangyong & Guo, Ming & Jiao, Yang & Cao, Jinde & Qiu, Jianlong, 2023. "A distribution center location optimization model based on minimizing operating costs under uncertain demand with logistics node capacity scalability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
  • Handle: RePEc:eee:phsmap:v:610:y:2023:i:c:s0378437122009505
    DOI: 10.1016/j.physa.2022.128392
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122009505
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128392?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sven Winkelhaus & Eric H. Grosse, 2020. "Logistics 4.0: a systematic review towards a new logistics system," International Journal of Production Research, Taylor & Francis Journals, vol. 58(1), pages 18-43, January.
    2. Yudong Zhang & Shuihua Wang & Genlin Ji, 2015. "A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-38, October.
    3. Bowen Liu & Zhenwei Wang & Xiaoyong Zhong, 2021. "Particle Swarm Optimization Algorithm in Numerical Simulation of Saturated Rock Slope Slip," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, March.
    4. Yanli Zhou & Shican Liu & Tianhai Tian & Qi He & Xiangyu Ge, 2021. "Using Particle Swarm Optimization Algorithm to Calibrate the Term Structure Model," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, January.
    5. Lifang Xiao & Xiangyang Chen & Hao Wang, 2021. "Calculation and realization of new method grey residual error correction model," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-13, July.
    6. Yeh, Wei-Chang & Chu, Ta-Chung, 2018. "A novel multi-distribution multi-state flow network and its reliability optimization problem," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 209-217.
    7. Jing Li & Yifei Sun & Sicheng Hou & Lianbo Ma, 2021. "Particle Swarm Optimization Algorithm with Multiple Phases for Solving Continuous Optimization Problems," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-13, June.
    8. Liu, Zhimin & Wu, Zhong & Ji, Ying & Qu, Shaojian & Raza, Hassan, 2021. "Two-stage distributionally robust mixed-integer optimization model for three-level location–allocation problems under uncertain environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    9. Jia, Zong-qian & Zhou, Zhi-fang & Zhang, Hong-jie & Li, Bo & Zhang, You-xian, 2020. "Forecast of coal consumption in Gansu Province based on Grey-Markov chain model," Energy, Elsevier, vol. 199(C).
    10. Winkelhaus, S. & Grosse, E. H., 2020. "Logistics 4.0: a systematic review towards a new logistics system," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 118539, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Couto, Luis. D. & Charkhgard, Mohammad & Karaman, Berke & Job, Nathalie & Kinnaert, Michel, 2023. "Lithium-ion battery design optimization based on a dimensionless reduced-order electrochemical model," Energy, Elsevier, vol. 263(PE).
    2. Gerkani Nezhad Moshizi, Zahra & Bazrafshan, Ommolbanin & Ramezani Etedali, Hadi & Esmaeilpour, Yahya & Collins, Brain, 2023. "Application of inclusive multiple model for the prediction of saffron water footprint," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Ivanov, Dmitry & Dolgui, Alexandre & Sokolov, Boris, 2022. "Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    4. Burgos, Diana & Ivanov, Dmitry, 2021. "Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    5. Brauner, Philipp & Ziefle, Martina, 2022. "Beyond playful learning – Serious games for the human-centric digital transformation of production and a design process model," Technology in Society, Elsevier, vol. 71(C).
    6. Cannavacciuolo, Lorella & Ferraro, Giovanna & Ponsiglione, Cristina & Primario, Simonetta & Quinto, Ivana, 2023. "Technological innovation-enabling industry 4.0 paradigm: A systematic literature review," Technovation, Elsevier, vol. 124(C).
    7. Yalcin, Haydar & Daim, Tugrul U., 2022. "Logistics, supply chain management and technology research: An analysis on the axis of technology mining," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    8. Chung, Sai-Ho, 2021. "Applications of smart technologies in logistics and transport: A review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    9. Farajpour, Farnoush & Hassanzadeh, Alireza & Elahi, Shaban & Ghazanfari, Mehdi, 2022. "Digital supply chain blueprint via a systematic literature review," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    10. Menti, Federica & Romero, David & Jacobsen, Peter, 2023. "A technology assessment and implementation model for evaluating socio-cultural and technical factors for the successful deployment of Logistics 4.0 technologies," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    11. Kabadurmus, Ozgur & Kayikci, Yaşanur & Demir, Sercan & Koc, Basar, 2023. "A data-driven decision support system with smart packaging in grocery store supply chains during outbreaks," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    12. Anna Saniuk, 2022. "The Logistics 4.0 Implementation Supported by the Balanced Scorecard Method," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 198-207.
    13. Ranasinghe, Thilini & Grosse, Eric H. & Glock, Christoph H. & Jaber, Mohamad Y., 2024. "Never too late to learn: Unlocking the potential of aging workforce in manufacturing and service industries," International Journal of Production Economics, Elsevier, vol. 270(C).
    14. Behl, Abhishek & Sampat, Brinda & Gaur, Jighyasu & Pereira, Vijay & Laker, Benjamin & Shankar, Amit & Shi, Yangyan & Roohanifar, Mohammad, 2024. "Can gamification help green supply chain management firms achieve sustainable results in servitized ecosystem? An empirical investigation," Technovation, Elsevier, vol. 129(C).
    15. Chen, Yi-Ting & Sun, Edward W. & Chang, Ming-Feng & Lin, Yi-Bing, 2021. "Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0," International Journal of Production Economics, Elsevier, vol. 238(C).
    16. Núñez-Merino, Miguel & Maqueira-Marín, Juan Manuel & Moyano-Fuentes, José & Castaño-Moraga, Carlos Alberto, 2022. "Industry 4.0 and supply chain. A Systematic Science Mapping analysis," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    17. Yang, Yun & Ma, Changxi & Ling, Gang, 2022. "Pre-location for temporary distribution station of urban emergency materials considering priority under COVID-19: A case study of Wuhan City, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    18. Mariusz Korzeń & Maciej Kruszyna, 2023. "Modified Ant Colony Optimization as a Means for Evaluating the Variants of the City Railway Underground Section," IJERPH, MDPI, vol. 20(6), pages 1-15, March.
    19. Cheng-Fu Huang & Ding-Hsiang Huang & Yi-Kuei Lin, 2022. "System reliability analysis for a cloud-based network under edge server capacity and budget constraints," Annals of Operations Research, Springer, vol. 312(1), pages 217-234, May.
    20. Mohammad Soleimani Amiri & Rizauddin Ramli & Ahmad Barari, 2023. "Optimally Initialized Model Reference Adaptive Controller of Wearable Lower Limb Rehabilitation Exoskeleton," Mathematics, MDPI, vol. 11(7), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:610:y:2023:i:c:s0378437122009505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.