IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v198y2020ics0360544220304151.html
   My bibliography  Save this article

Critical time windows for renewable resource complementarity assessment

Author

Listed:
  • Berger, Mathias
  • Radu, David
  • Fonteneau, Raphaël
  • Henry, Robin
  • Glavic, Mevludin
  • Fettweis, Xavier
  • Le Du, Marc
  • Panciatici, Patrick
  • Balea, Lucian
  • Ernst, Damien

Abstract

This paper proposes a framework to assess the complementarity between geographically dispersed variable renewable energy resources over arbitrary time scales. More precisely, the framework relies on the concept of critical time windows, which offers an accurate time-domain description of low probability power production events impacting power system operation and planning. A scalar criticality indicator is derived to quantify the spatiotemporal complementarity that renewable generation sites may exhibit, and it is leveraged to propose optimisation models seeking to identify deployment patterns with maximum complementarity. The usefulness of the framework is shown in a case study investigating the complementarity between wind regimes in continental western Europe and southern Greenland, using roughly 300 candidate locations and 10 years of reanalysis and simulated data with hourly resolution. Besides showing that the occurrence of low wind power production events can be reduced on a regional scale by exploiting diversity in local wind patterns, results highlight the fact that aggregating wind power production sites located on different continents may result in a lower occurrence of system-wide low wind power production events and point to potential benefits of intercontinental electricity interconnections.

Suggested Citation

  • Berger, Mathias & Radu, David & Fonteneau, Raphaël & Henry, Robin & Glavic, Mevludin & Fettweis, Xavier & Le Du, Marc & Panciatici, Patrick & Balea, Lucian & Ernst, Damien, 2020. "Critical time windows for renewable resource complementarity assessment," Energy, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220304151
    DOI: 10.1016/j.energy.2020.117308
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220304151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    2. Rose, Stephen & Apt, Jay, 2015. "What can reanalysis data tell us about wind power?," Renewable Energy, Elsevier, vol. 83(C), pages 963-969.
    3. Zhang, Hengxu & Cao, Yongji & Zhang, Yi & Terzija, Vladimir, 2018. "Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data," Applied Energy, Elsevier, vol. 216(C), pages 172-182.
    4. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    5. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    6. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Spatial and temporal assessments of complementarity for renewable energy resources in China," Energy, Elsevier, vol. 177(C), pages 262-275.
    7. Katzenstein, Warren & Fertig, Emily & Apt, Jay, 2010. "The variability of interconnected wind plants," Energy Policy, Elsevier, vol. 38(8), pages 4400-4410, August.
    8. Hoicka, Christina E. & Rowlands, Ian H., 2011. "Solar and wind resource complementarity: Advancing options for renewable electricity integration in Ontario, Canada," Renewable Energy, Elsevier, vol. 36(1), pages 97-107.
    9. Chatzivasileiadis, Spyros & Ernst, Damien & Andersson, Göran, 2013. "The Global Grid," Renewable Energy, Elsevier, vol. 57(C), pages 372-383.
    10. Beluco, Alexandre & de Souza, Paulo Kroeff & Krenzinger, Arno, 2008. "A dimensionless index evaluating the time complementarity between solar and hydraulic energies," Renewable Energy, Elsevier, vol. 33(10), pages 2157-2165.
    11. Monforti, F. & Huld, T. & Bódis, K. & Vitali, L. & D'Isidoro, M. & Lacal-Arántegui, R., 2014. "Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach," Renewable Energy, Elsevier, vol. 63(C), pages 576-586.
    12. Olauson, Jon & Bergkvist, Mikael, 2016. "Correlation between wind power generation in the European countries," Energy, Elsevier, vol. 114(C), pages 663-670.
    13. Bett, Philip E. & Thornton, Hazel E., 2016. "The climatological relationships between wind and solar energy supply in Britain," Renewable Energy, Elsevier, vol. 87(P1), pages 96-110.
    14. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    15. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    16. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henao, Felipe & Viteri, Juan P. & Rodríguez, Yeny & Gómez, Juan & Dyner, Isaac, 2020. "Annual and interannual complementarities of renewable energy sources in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Karadöl, İsrafil & Yıldız, Ceyhun & Şekkeli, Mustafa, 2021. "Determining optimal spatial and temporal complementarity between wind and hydropower," Energy, Elsevier, vol. 230(C).
    3. Radu, David & Berger, Mathias & Dubois, Antoine & Fonteneau, Raphaël & Pandžić, Hrvoje & Dvorkin, Yury & Louveaux, Quentin & Ernst, Damien, 2022. "Assessing the impact of offshore wind siting strategies on the design of the European power system," Applied Energy, Elsevier, vol. 305(C).
    4. Gillianne Bowman & Thierry Huber & Vanessa Burg, 2023. "Linking Solar and Biomass Resources to Generate Renewable Energy: Can We Find Local Complementarities in the Agricultural Setting?," Energies, MDPI, vol. 16(3), pages 1-17, February.
    5. Karl Ezra S. Pilario & Jessa A. Ibañez & Xaviery N. Penisa & Johndel B. Obra & Carl Michael F. Odulio & Joey D. Ocon, 2022. "Spatio-Temporal Solar–Wind Complementarity Assessment in the Province of Kalinga-Apayao, Philippines Using Canonical Correlation Analysis," Sustainability, MDPI, vol. 14(6), pages 1-12, March.
    6. Jani, Hardik K. & Kachhwaha, Surendra Singh & Nagababu, Garlapati & Das, Alok, 2022. "Temporal and spatial simultaneity assessment of wind-solar energy resources in India by statistical analysis and machine learning clustering approach," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Laibao & Wang, Zheng & Wang, Yang & Wang, Jun & Chang, Rui & He, Gang & Tang, Wenjun & Gao, Ziqi & Li, Jiangtao & Liu, Changyi & Zhao, Lin & Qin, Dahe & Li, Shuangcheng, 2020. "Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Gao, Yang & Ma, Shaoxiu & Wang, Tao & Miao, Changhong & Yang, Fan, 2022. "Distributed onshore wind farm siting using intelligent optimization algorithm based on spatial and temporal variability of wind energy," Energy, Elsevier, vol. 258(C).
    3. Henao, Felipe & Viteri, Juan P. & Rodríguez, Yeny & Gómez, Juan & Dyner, Isaac, 2020. "Annual and interannual complementarities of renewable energy sources in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Canales, Fausto A. & Jurasz, Jakub & Beluco, Alexandre & Kies, Alexander, 2020. "Assessing temporal complementarity between three variable energy sources through correlation and compromise programming," Energy, Elsevier, vol. 192(C).
    5. Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
    6. Prasad, Abhnil Amtesh & Yang, Yuqing & Kay, Merlinde & Menictas, Chris & Bremner, Stephen, 2021. "Synergy of solar photovoltaics-wind-battery systems in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Xiaomei Ma & Yongqian Liu & Jie Yan & Han Wang, 2023. "A WGAN-GP-Based Scenarios Generation Method for Wind and Solar Power Complementary Study," Energies, MDPI, vol. 16(7), pages 1-20, March.
    8. Neto, Pedro Bezerra Leite & Saavedra, Osvaldo R. & Oliveira, Denisson Q., 2020. "The effect of complementarity between solar, wind and tidal energy in isolated hybrid microgrids," Renewable Energy, Elsevier, vol. 147(P1), pages 339-355.
    9. Lindberg, O. & Lingfors, D. & Arnqvist, J., 2022. "Analyzing the mechanisms behind temporal correlation between power sources using frequency separated time scales: A Swedish case study on PV and wind," Energy, Elsevier, vol. 259(C).
    10. Wei Sun & Sam Harrison & Gareth P. Harrison, 2020. "Value of Local Offshore Renewable Resource Diversity for Network Hosting Capacity," Energies, MDPI, vol. 13(22), pages 1-20, November.
    11. Rafael Peña Gallardo & Adalberto Ospino Castro & Aurelio Medina Ríos, 2020. "An Image Processing-Based Method to Assess the Monthly Energetic Complementarity of Solar and Wind Energy in Colombia," Energies, MDPI, vol. 13(5), pages 1-17, February.
    12. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    13. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    14. Zhang, Hengxu & Cao, Yongji & Zhang, Yi & Terzija, Vladimir, 2018. "Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data," Applied Energy, Elsevier, vol. 216(C), pages 172-182.
    15. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Spatial and temporal assessments of complementarity for renewable energy resources in China," Energy, Elsevier, vol. 177(C), pages 262-275.
    16. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. António Couto & Ana Estanqueiro, 2020. "Exploring Wind and Solar PV Generation Complementarity to Meet Electricity Demand," Energies, MDPI, vol. 13(16), pages 1-21, August.
    18. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    19. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    20. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220304151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.