IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v197y2020ics036054422030270x.html
   My bibliography  Save this article

Solid-state symmetric supercapacitor based on Y doped Sr(OH)2 using SILAR method

Author

Listed:
  • Kavyashree,
  • Parveen, Shama
  • Sharma, Suneel Kumar
  • Pandey, S.N.

Abstract

Supercapacitor is one of the most promising and emerging type of energy storage devices having the merits of both conventional battery and traditional capacitor. In this regard, we have deposited Yttrium doped Strontium hydroxide thin films on stainless steel substrate with the help of a facile, cost-effective successive ionic layer adsorption and reaction technique at room temperature without using any binder. Doping of Yttrium into Strontium hydroxide enhances both electronic conductivity and electrochemical performance of the electrode for energy storage. Nanorods like structure with the tuberose morphology has been obtained with the help of field emission scanning electron microscopy. The cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy measurements show the pseudocapacitive battery like response. Among all the synthesised materials, 1.0 at. % Yttrium doped Strontium hydroxide shows a high specific capacity of 705.3 C g−1 at 0.4 mA current rate and stability of ∼82% at 2.5 mA current rate. The prototype light-weight solid-state symmetric supercapacitor device of Yttrium doped Strontium hydroxide electrodes has been fabricated by sandwiching PVA-Na2SO4 gel. Thus, we observe that this device has potential applications for the next-generation cost effective energy storage system.

Suggested Citation

  • Kavyashree, & Parveen, Shama & Sharma, Suneel Kumar & Pandey, S.N., 2020. "Solid-state symmetric supercapacitor based on Y doped Sr(OH)2 using SILAR method," Energy, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:energy:v:197:y:2020:i:c:s036054422030270x
    DOI: 10.1016/j.energy.2020.117163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030270X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Chuanjun & Lin, Haibo & Lu, Haiyan & Xing, Endong & Zhang, Yusi & Xie, Bingyao, 2015. "Electrodeposition of three-dimensional ZnO@MnO2 core–shell nanocables as high-performance electrode material for supercapacitors," Energy, Elsevier, vol. 93(P2), pages 1259-1266.
    2. Imaeda, Tatsuhiro & Kawasaki, Kyozi, 1992. "Theory of morphological evolution in Ostwald ripening," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 186(3), pages 359-387.
    3. Maria R. Lukatskaya & Bruce Dunn & Yury Gogotsi, 2016. "Multidimensional materials and device architectures for future hybrid energy storage," Nature Communications, Nature, vol. 7(1), pages 1-13, November.
    4. Li-Qiang Mai & Aamir Minhas-Khan & Xiaocong Tian & Kalele Mulonda Hercule & Yun-Long Zhao & Xu Lin & Xu Xu, 2013. "Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    5. Inamdar, A.I. & Jo, Y. & Kim, J. & Han, J. & Pawar, S.M. & Kalubarme, R.S. & Park, C.J. & Hong, J.P. & Park, Y.S. & Jung, W. & Kim, H. & Im, Hyunsik, 2015. "Synthesis and enhanced electrochemical supercapacitive properties of manganese oxide nanoflake electrodes," Energy, Elsevier, vol. 83(C), pages 532-538.
    6. Zhang, Yuqing & Zhao, Xuehua & Zhang, Simeng & Zhang, Guodong & Liu, Shaomin, 2012. "Optimized preparation conditions of yttria doped zirconia coatings on potassium ferrate (VI) electrode for alkaline super-iron battery," Applied Energy, Elsevier, vol. 99(C), pages 265-271.
    7. Mei, Junfeng & Fu, Wenbin & Zhang, Zemin & Jiang, Xiao & Bu, Han & Jiang, Changjun & Xie, Erqing & Han, Weihua, 2017. "Vertically-aligned Co3O4 nanowires interconnected with Co(OH)2 nanosheets as supercapacitor electrode," Energy, Elsevier, vol. 139(C), pages 1153-1158.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dou, Shumei & Li, Ping & Tan, Dan & Li, Huiqin & Ren, Lijun & Wei, Fenyan, 2021. "Synthesis and capacitance performances of Ni–Mn-Oxides as electrode materials for high-performance supercapacitors," Energy, Elsevier, vol. 227(C).
    2. Golkhatmi, Sanaz Zarabi & Sedghi, Arman & Miankushki, Hoda Nourmohammadi & Khalaj, Maryam, 2021. "Structural properties and supercapacitive performance evaluation of the nickel oxide/graphene/polypyrrole hybrid ternary nanocomposite in aqueous and organic electrolytes," Energy, Elsevier, vol. 214(C).
    3. Sakthivel, Mani & Ramki, Settu & Chen, Shen-Ming & Ho, Kuo-Chuan, 2022. "Defect rich Se–CoWS2 as anode and banana flower skin-derived activated carbon channels with interconnected porous structure as cathode materials for asymmetric supercapacitor application," Energy, Elsevier, vol. 257(C).
    4. Parveen, Shama & Kavyashree, & Sharma, Suneel Kumar & Pandey, S.N., 2021. "High performance solid state symmetric supercapacitor based on reindeer moss-like structured Al(OH)3/MnO2/FeOOH composite electrode for energy storage applications," Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ensafi, Ali A. & Ahmadi, Najmeh & Rezaei, Behzad & Abdolmaleki, Amir & Mahmoudian, Manzar, 2018. "A new quaternary nanohybrid composite electrode for a high-performance supercapacitor," Energy, Elsevier, vol. 164(C), pages 707-721.
    2. Aleksei Valentinovich Bogoviz & Svetlana Vladislavlevna Lobova & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2018. "Russia s Energy Security Doctrine: Addressing Emerging Challenges and Opportunities," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 1-6.
    3. Ortiz-Vitoriano, N. & Bernuy-López, C. & Ruiz de Larramendi, I. & Knibbe, R. & Thydén, K. & Hauch, A. & Holtappels, P. & Rojo, T., 2013. "Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation," Applied Energy, Elsevier, vol. 104(C), pages 984-991.
    4. Qiulong Wei & Xiaoqing Chang & Danielle Butts & Ryan DeBlock & Kun Lan & Junbin Li & Dongliang Chao & Dong-Liang Peng & Bruce Dunn, 2023. "Surface-redox sodium-ion storage in anatase titanium oxide," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Parveen, Shama & Kavyashree, & Sharma, Suneel Kumar & Pandey, S.N., 2021. "High performance solid state symmetric supercapacitor based on reindeer moss-like structured Al(OH)3/MnO2/FeOOH composite electrode for energy storage applications," Energy, Elsevier, vol. 224(C).
    6. Changshi, Liu, 2021. "Reliable and precise evaluation energy-transfer and efficiency of super-capacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Zhang, Ziyun & Wang, Shilong & Chen, Xiaomin & Han, Sheng & Jiang, Jibo, 2024. "Built-in electric field and selenium vacancies synergistically enhance NiSe2@Co0.85Se high-performance supercapacitors," Energy, Elsevier, vol. 293(C).
    8. Dhakal, Ganesh & Mohapatra, Debananda & Tamang, Tensangmu Lama & Lee, Moonyong & Lee, Yong Rok & Shim, Jae-Jin, 2021. "Redox-additive electrolyte–driven enhancement of the electrochemical energy storage performance of asymmetric Co3O4//carbon nano-onions supercapacitors," Energy, Elsevier, vol. 218(C).
    9. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.
    10. Wang, Keliang & Cao, Yuhe & Wang, Xiaomin & Kharel, Parashu Ram & Gibbons, William & Luo, Bing & Gu, Zhengrong & Fan, Qihua & Metzger, Lloyd, 2016. "Nickel catalytic graphitized porous carbon as electrode material for high performance supercapacitors," Energy, Elsevier, vol. 101(C), pages 9-15.
    11. Zhang, Yunong & Liu, Le & Xi, Jingyu & Wu, Zenghua & Qiu, Xinping, 2017. "The benefits and limitations of electrolyte mixing in vanadium flow batteries," Applied Energy, Elsevier, vol. 204(C), pages 373-381.
    12. Yuan, Chuanjun & Lin, Haibo & Lu, Haiyan & Xing, Endong & Zhang, Yusi & Xie, Bingyao, 2015. "Electrodeposition of three-dimensional ZnO@MnO2 core–shell nanocables as high-performance electrode material for supercapacitors," Energy, Elsevier, vol. 93(P2), pages 1259-1266.
    13. Wang, Y. & Qiao, X. & Zhang, C. & Zhou, Xiangyang, 2018. "Self-discharge of a hybrid supercapacitor with incorporated galvanic cell components," Energy, Elsevier, vol. 159(C), pages 1035-1045.
    14. Kim, Hong-Ki & Lee, Seung-Hwan, 2016. "Enhanced electrochemical performances of cylindrical hybrid supercapacitors using activated carbon/ Li4-xMxTi5-yNyO12 (M=Na, N=V, Mn) electrodes," Energy, Elsevier, vol. 109(C), pages 506-511.
    15. Iqbal, Muhammad Faisal & Ashiq, Muhammad Naeem & Hassan, Mahmood-Ul & Nawaz, Rahat & Masood, Aneeqa & Razaq, Aamir, 2018. "Excellent electrochemical behavior of graphene oxide based aluminum sulfide nanowalls for supercapacitor applications," Energy, Elsevier, vol. 159(C), pages 151-159.
    16. Nitesh Kumar & Lingaraj Pradhan & Bikash Kumar Jena, 2022. "Recent progress on novel current collector electrodes for energy storage devices: Supercapacitors," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    17. Zhang, Jijun & Chen, Zexiang & Wang, Yan & Li, Hai, 2016. "Morphology-controllable synthesis of 3D CoNiO2 nano-networks as a high-performance positive electrode material for supercapacitors," Energy, Elsevier, vol. 113(C), pages 943-948.
    18. Lingappan, Niranjanmurthi & Lee, Wonoh & Passerini, Stefano & Pecht, Michael, 2023. "A comprehensive review of separator membranes in lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    19. Tao Wang & Runtong Pan & Murillo L. Martins & Jinlei Cui & Zhennan Huang & Bishnu P. Thapaliya & Chi-Linh Do-Thanh & Musen Zhou & Juntian Fan & Zhenzhen Yang & Miaofang Chi & Takeshi Kobayashi & Jianz, 2023. "Machine-learning-assisted material discovery of oxygen-rich highly porous carbon active materials for aqueous supercapacitors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:197:y:2020:i:c:s036054422030270x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.