IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v151y2021ics1364032121008443.html
   My bibliography  Save this article

Reliable and precise evaluation energy-transfer and efficiency of super-capacitors

Author

Listed:
  • Changshi, Liu

Abstract

This article presents a basic physics model for the extraction of the potential-time characteristics of super-capacitors during charging and discharging that specifically accounts for the unique contributions to the power source and their nonlinear behaviors. The essential feature of the proposed extraction method is that it is based on the physical phenomena underlying the electrical characteristics of super-capacitors, this phenomenology model describes the essential features of the potential–time characteristics of the super-capacitors which can then be fit to any physics-based super-capacitor system. There are only three parameters in this elementary physics model and the model is expressed in the form of an explicit function. The best result is that the integral of the model over time results in an explicit function which corresponds to the input and the output energy. There is great beneficial to both super-capacitor designers and industry. The experimental validation of the new model agrees well with the measurements. To avoid confusion in weighing in super-capacitor performance, energy-transfer efficiency is introduced. Experimental and theoretical results show that the minimum energy-transfer efficiency is neither at the maximum current density nor at the minimum current density. We hope, by using this energy-transfer efficiency, the existing inconsistencies and confusion in the evaluation of the super-capacitor performance can be dispelled so as to help facilitate further progress in the field.

Suggested Citation

  • Changshi, Liu, 2021. "Reliable and precise evaluation energy-transfer and efficiency of super-capacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008443
    DOI: 10.1016/j.rser.2021.111566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121008443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weiqian Tian & Armin VahidMohammadi & Zhen Wang & Liangqi Ouyang & Majid Beidaghi & Mahiar M. Hamedi, 2019. "Layer-by-layer self-assembly of pillared two-dimensional multilayers," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Shinde, Nanasaheb M. & Shinde, Pritamkumar V. & Mane, Rajaram S. & Ho Kim, Kwang, 2021. "Solution-method processed Bi-type nanoelectrode materials for supercapacitor applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Muzaffar, Aqib & Ahamed, M. Basheer & Deshmukh, Kalim & Thirumalai, Jagannathan, 2019. "A review on recent advances in hybrid supercapacitors: Design, fabrication and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 123-145.
    4. Khiari, Besma & Jeguirim, Mejdi & Limousy, Lionel & Bennici, Simona, 2019. "Biomass derived chars for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 253-273.
    5. Li-Qiang Mai & Aamir Minhas-Khan & Xiaocong Tian & Kalele Mulonda Hercule & Yun-Long Zhao & Xu Lin & Xu Xu, 2013. "Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    6. Xingjiang Wu & Yijun Xu & Ying Hu & Guan Wu & Hengyang Cheng & Qiang Yu & Kai Zhang & Wei Chen & Su Chen, 2018. "Microfluidic-spinning construction of black-phosphorus-hybrid microfibres for non-woven fabrics toward a high energy density flexible supercapacitor," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    7. Zhang, Lei & Hu, Xiaosong & Wang, Zhenpo & Sun, Fengchun & Dorrell, David G., 2018. "A review of supercapacitor modeling, estimation, and applications: A control/management perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1868-1878.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Wang, Bin & Wang, Chaohui & Wang, Zhiyu & Ni, Siliang & Yang, Yixin & Tian, Pengyu, 2023. "Adaptive state of energy evaluation for supercapacitor in emergency power system of more-electric aircraft," Energy, Elsevier, vol. 263(PA).
    3. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Shailendra Rajput & Alon Kuperman & Asher Yahalom & Moshe Averbukh, 2020. "Studies on Dynamic Properties of Ultracapacitors Using Infinite r–C Chain Equivalent Circuit and Reverse Fourier Transform," Energies, MDPI, vol. 13(18), pages 1-11, September.
    6. Liu, Chunli & Li, Qiang & Wang, Kai, 2021. "State-of-charge estimation and remaining useful life prediction of supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Qaisar Abbas & Mojtaba Mirzaeian & Michael R.C. Hunt & Peter Hall & Rizwan Raza, 2020. "Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems," Energies, MDPI, vol. 13(21), pages 1-41, November.
    8. Abdelkareem, Mohammad Ali & Abbas, Qaisar & Sayed, Enas Taha & Shehata, N. & Parambath, J.B.M. & Alami, Abdul Hai & Olabi, A.G., 2024. "Recent advances on metal-organic frameworks (MOFs) and their applications in energy conversion devices: Comprehensive review," Energy, Elsevier, vol. 299(C).
    9. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Monowar Hossain & Saad Mekhilef & Firdaus Afifi & Laith M Halabi & Lanre Olatomiwa & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2018. "Application of the hybrid ANFIS models for long term wind power density prediction with extrapolation capability," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-31, April.
    11. Ur Rehman, Ata & Zhao, Tianyu & Shah, Muhammad Zahir & Khan, Yaqoob & Hayat, Asif & Dang, Changwei & Zheng, Maosheng & Yun, Sining, 2023. "Nanoengineering of MgSO4 nanohybrid on MXene substrate for efficient thermochemical heat storage material," Applied Energy, Elsevier, vol. 332(C).
    12. Pedrayes, Joaquín F. & Melero, Manuel G. & Cano, Jose M. & Norniella, Joaquín G. & Duque, Salvador B. & Rojas, Carlos H. & Orcajo, Gonzalo A., 2021. "Lambert W function based closed-form expressions of supercapacitor electrical variables in constant power applications," Energy, Elsevier, vol. 218(C).
    13. Jiang, Zhuosheng & Zhai, Shengli & Huang, Mingzhi & Songsiriritthigul, Prayoon & Aung, Su Htike & Oo, Than Zaw & Luo, Min & Chen, Fuming, 2021. "3D carbon nanocones/metallic MoS2 nanosheet electrodes towards flexible supercapacitors for wearable electronics," Energy, Elsevier, vol. 227(C).
    14. Ganesan Sriram & Mahaveer Kurkuri & Tae Hwan Oh, 2023. "Recent Trends in Highly Porous Structured Carbon Electrodes for Supercapacitor Applications: A Review," Energies, MDPI, vol. 16(12), pages 1-36, June.
    15. Henry Miniguano & Andrés Barrado & Cristina Fernández & Pablo Zumel & Antonio Lázaro, 2019. "A General Parameter Identification Procedure Used for the Comparative Study of Supercapacitors Models," Energies, MDPI, vol. 12(9), pages 1-20, May.
    16. Chenchen Ji & Haonan Cui & Hongyu Mi & Shengchun Yang, 2021. "Applications of 2D MXenes for Electrochemical Energy Conversion and Storage," Energies, MDPI, vol. 14(23), pages 1-23, December.
    17. Sun, Yang & Ahmadi, Younes & Kim, Ki-Hyun & Lee, Jechan, 2022. "The use of bismuth-based photocatalysts for the production of ammonia through photocatalytic nitrogen fixation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    18. Krishnan, Syam G. & Arulraj, Arunachalam & Khalid, Mohammad & Reddy, M.V. & Jose, Rajan, 2021. "Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    20. Hu, Lin & Tian, Qingtao & Zou, Changfu & Huang, Jing & Ye, Yao & Wu, Xianhui, 2022. "A study on energy distribution strategy of electric vehicle hybrid energy storage system considering driving style based on real urban driving data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.