IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v139y2017icp1153-1158.html
   My bibliography  Save this article

Vertically-aligned Co3O4 nanowires interconnected with Co(OH)2 nanosheets as supercapacitor electrode

Author

Listed:
  • Mei, Junfeng
  • Fu, Wenbin
  • Zhang, Zemin
  • Jiang, Xiao
  • Bu, Han
  • Jiang, Changjun
  • Xie, Erqing
  • Han, Weihua

Abstract

Three-dimensional (3D) hierarchical nanostructure consisting of vertically-aligned Co3O4 nanowires and Co(OH)2 nanosheets have been successfully prepared by a two-step wet chemical method. In this structure, the Co3O4 nanowires were wrapped and interconnected with ultrathin Co(OH)2 nanosheets and combined into a whole network. The Co3O4/Co(OH)2 3D network nanostructure shows a high specific capacitance of 867 F/g at a current density of 2 A/g, and a satisfied cycling stability with 84.5% capacitance retention after 5000 cycles. An asymmetric supercapacitor with the Co3O4/Co(OH)2 and activated carbon was also assembled by using 2 M KOH as electrolyte. The supercapacitor shows a wide potential window of 0–1.5 V, and the energy density can reach 25.6 W h kg−1 at a power density of 939.03 W kg−1. Our work has proposed a new strategy to improve the electrode performance of electrochemical supercapacitors by rationally building three-dimensional nanomaterial network with nanowires and nanosheets.

Suggested Citation

  • Mei, Junfeng & Fu, Wenbin & Zhang, Zemin & Jiang, Xiao & Bu, Han & Jiang, Changjun & Xie, Erqing & Han, Weihua, 2017. "Vertically-aligned Co3O4 nanowires interconnected with Co(OH)2 nanosheets as supercapacitor electrode," Energy, Elsevier, vol. 139(C), pages 1153-1158.
  • Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:1153-1158
    DOI: 10.1016/j.energy.2017.08.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217313907
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.08.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pal, Monalisa & Rakshit, Rupali & Singh, Ashutosh Kumar & Mandal, Kalyan, 2016. "Ultra high supercapacitance of ultra small Co3O4 nanocubes," Energy, Elsevier, vol. 103(C), pages 481-486.
    2. Nguyen, Tuyen & Boudard, Michel & João Carmezim, M. & Fátima Montemor, M., 2017. "NixCo1-x(OH)2 nanosheets on carbon nanofoam paper as high areal capacity electrodes for hybrid supercapacitors," Energy, Elsevier, vol. 126(C), pages 208-216.
    3. Xu, Le & Zhao, Yan & Lian, Jiabiao & Xu, Yuanguo & Bao, Jian & Qiu, Jingxia & Xu, Li & Xu, Hui & Hua, Mingqing & Li, Huaming, 2017. "Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density," Energy, Elsevier, vol. 123(C), pages 296-304.
    4. Xiang, Dong & Yin, Longwei & Wang, Chenxiang & Zhang, Luyuan, 2016. "High electrochemical performance of RuO2–Fe2O3 nanoparticles embedded ordered mesoporous carbon as a supercapacitor electrode material," Energy, Elsevier, vol. 106(C), pages 103-111.
    5. Hong, Wei & Wang, Jinqing & Li, Zhangpeng & Yang, Shengrong, 2015. "Fabrication of Co3O4@Co–Ni sulfides core/shell nanowire arrays as binder-free electrode for electrochemical energy storage," Energy, Elsevier, vol. 93(P1), pages 435-441.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhakal, Ganesh & Mohapatra, Debananda & Tamang, Tensangmu Lama & Lee, Moonyong & Lee, Yong Rok & Shim, Jae-Jin, 2021. "Redox-additive electrolyte–driven enhancement of the electrochemical energy storage performance of asymmetric Co3O4//carbon nano-onions supercapacitors," Energy, Elsevier, vol. 218(C).
    2. Ensafi, Ali A. & Ahmadi, Najmeh & Rezaei, Behzad & Abdolmaleki, Amir & Mahmoudian, Manzar, 2018. "A new quaternary nanohybrid composite electrode for a high-performance supercapacitor," Energy, Elsevier, vol. 164(C), pages 707-721.
    3. Wang, Y. & Qiao, X. & Zhang, C. & Zhou, Xiangyang, 2018. "Self-discharge of a hybrid supercapacitor with incorporated galvanic cell components," Energy, Elsevier, vol. 159(C), pages 1035-1045.
    4. Zhang, Ziyun & Wang, Shilong & Chen, Xiaomin & Han, Sheng & Jiang, Jibo, 2024. "Built-in electric field and selenium vacancies synergistically enhance NiSe2@Co0.85Se high-performance supercapacitors," Energy, Elsevier, vol. 293(C).
    5. Kavyashree, & Parveen, Shama & Sharma, Suneel Kumar & Pandey, S.N., 2020. "Solid-state symmetric supercapacitor based on Y doped Sr(OH)2 using SILAR method," Energy, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamiel, Charmaine & Nguyen, Van Hoa & Hussain, Iftikhar & Shim, Jae-Jin, 2017. "Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte," Energy, Elsevier, vol. 140(P1), pages 901-911.
    2. Ensafi, Ali A. & Ahmadi, Najmeh & Rezaei, Behzad & Abdolmaleki, Amir & Mahmoudian, Manzar, 2018. "A new quaternary nanohybrid composite electrode for a high-performance supercapacitor," Energy, Elsevier, vol. 164(C), pages 707-721.
    3. Wang, Y. & Qiao, X. & Zhang, C. & Zhou, Xiangyang, 2018. "Self-discharge of a hybrid supercapacitor with incorporated galvanic cell components," Energy, Elsevier, vol. 159(C), pages 1035-1045.
    4. Kim, Hong-Ki & Lee, Seung-Hwan, 2016. "Enhanced electrochemical performances of cylindrical hybrid supercapacitors using activated carbon/ Li4-xMxTi5-yNyO12 (M=Na, N=V, Mn) electrodes," Energy, Elsevier, vol. 109(C), pages 506-511.
    5. Zhang, Jijun & Chen, Zexiang & Wang, Yan & Li, Hai, 2016. "Morphology-controllable synthesis of 3D CoNiO2 nano-networks as a high-performance positive electrode material for supercapacitors," Energy, Elsevier, vol. 113(C), pages 943-948.
    6. Xu, Le & Zhao, Yan & Lian, Jiabiao & Xu, Yuanguo & Bao, Jian & Qiu, Jingxia & Xu, Li & Xu, Hui & Hua, Mingqing & Li, Huaming, 2017. "Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density," Energy, Elsevier, vol. 123(C), pages 296-304.
    7. Parveen, Shama & Kavyashree, & Sharma, Suneel Kumar & Pandey, S.N., 2021. "High performance solid state symmetric supercapacitor based on reindeer moss-like structured Al(OH)3/MnO2/FeOOH composite electrode for energy storage applications," Energy, Elsevier, vol. 224(C).
    8. Nguyen, Tuyen & Boudard, Michel & João Carmezim, M. & Fátima Montemor, M., 2017. "NixCo1-x(OH)2 nanosheets on carbon nanofoam paper as high areal capacity electrodes for hybrid supercapacitors," Energy, Elsevier, vol. 126(C), pages 208-216.
    9. Yedluri Anil Kumar & Hee-Je Kim, 2018. "Effect of Time on a Hierarchical Corn Skeleton-Like Composite of CoO@ZnO as Capacitive Electrode Material for High Specific Performance Supercapacitors," Energies, MDPI, vol. 11(12), pages 1-16, November.
    10. Wang, Mingyue & Huang, Ying & Wang, Ke & Zhu, Yade & Zhang, Na & Zhang, Hongming & Li, Suping & Feng, Zhenhe, 2018. "PVD synthesis of binder-free silicon and carbon coated 3D α-Fe2O3 nanorods hybrid films as high-capacity and long-life anode for flexible lithium-ion batteries," Energy, Elsevier, vol. 164(C), pages 1021-1029.
    11. Kanakaraj Aruchamy & Athinarayanan Balasankar & Subramaniyan Ramasundaram & Tae Hwan Oh, 2023. "Recent Design and Synthesis Strategies for High-Performance Supercapacitors Utilizing ZnCo 2 O 4 -Based Electrode Materials," Energies, MDPI, vol. 16(15), pages 1-36, July.
    12. Lee, Seung-Hwan & Kim, Jong-Myon, 2018. "Punched H2Ti12O25 anode and activated carbon cathode for high energy/high power hybrid supercapacitors," Energy, Elsevier, vol. 150(C), pages 816-821.
    13. Patil, Bebi & Ahn, Suhyun & Park, Changyong & Song, Hyeonjun & Jeong, Youngjin & Ahn, Heejoon, 2018. "Simple and novel strategy to fabricate ultra-thin, lightweight, stackable solid-state supercapacitors based on MnO2-incorporated CNT-web paper," Energy, Elsevier, vol. 142(C), pages 608-616.
    14. Pappu, Samhita & Rao, Tata N. & Martha, Surendra K. & Bulusu, Sarada V., 2022. "Electrodeposited Manganese Oxide based Redox Mediator Driven 2.2 V High Energy Density Aqueous Supercapacitor," Energy, Elsevier, vol. 243(C).
    15. Khalaj, Maryam & Sedghi, Arman & Miankushki, Hoda Nourmohammadi & Golkhatmi, Sanaz Zarabi, 2019. "Synthesis of novel graphene/Co3O4/polypyrrole ternary nanocomposites as electrochemically enhanced supercapacitor electrodes," Energy, Elsevier, vol. 188(C).
    16. Alami, Abdul Hai & Rajab, Bilal & Aokal, Kamilia, 2017. "Assessment of silver nanowires infused with zinc oxide as a transparent electrode for dye-sensitized solar cell applications," Energy, Elsevier, vol. 139(C), pages 1231-1236.
    17. Rath, Tanmoy & Pramanik, Nilkamal & Kumar, Sandeep, 2017. "High electrochemical performance flexible solid-state supercapacitor based on Co-doped reduced graphene oxide and silk fibroin composites," Energy, Elsevier, vol. 141(C), pages 1982-1988.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:139:y:2017:i:c:p:1153-1158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.