IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v194y2020ics0360544219324685.html
   My bibliography  Save this article

Drinking water supply as low-temperature source in the district heating system: A case study for the city of Copenhagen

Author

Listed:
  • Hubeck-Graudal, Helga
  • Kirstein, Jonas Kjeld
  • Ommen, Torben
  • Rygaard, Martin
  • Elmegaard, Brian

Abstract

This paper explores the potential for using large-scale heat pumps (HPs) to extract energy from Copenhagen’s drinking water network and deliver it to its district heating system. The system involves certain losses in terms of additional heat and power consumption for end-use water heating. The net potential for energy extraction was analysed by means of an EPANET model to simulate system-wide temperatures in a piped distribution network. The model was validated against measured data from the network. Heat transfer in service lines was computed analytically and included in the net potential for energy extraction, which was determined to be 21 MW in Copenhagen. Around 38% of the HP source demand was harnessed from the ground. With HP COPs between 2.8 and 3.2, the System COP was only 1.7, thus suggesting that the choice of drinking water as a low-temperature heat source should depend on the available alternatives. Drinking water HPs have the side-benefit of preventing high drinking water temperatures; if operated in the summer they increased the share of supplied water complying with a recommended upper temperature limit of 12 °C from 42% to 81%.

Suggested Citation

  • Hubeck-Graudal, Helga & Kirstein, Jonas Kjeld & Ommen, Torben & Rygaard, Martin & Elmegaard, Brian, 2020. "Drinking water supply as low-temperature source in the district heating system: A case study for the city of Copenhagen," Energy, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219324685
    DOI: 10.1016/j.energy.2019.116773
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219324685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116773?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2014. "Heat pumps in combined heat and power systems," Energy, Elsevier, vol. 76(C), pages 989-1000.
    2. van der Hoek, Jan Peter & Mol, Stefan & Giorgi, Sara & Ahmad, Jawairia Imtiaz & Liu, Gang & Medema, Gertjan, 2018. "Energy recovery from the water cycle: Thermal energy from drinking water," Energy, Elsevier, vol. 162(C), pages 977-987.
    3. Dalla Rosa, A. & Li, H. & Svendsen, S., 2011. "Method for optimal design of pipes for low-energy district heating, with focus on heat losses," Energy, Elsevier, vol. 36(5), pages 2407-2418.
    4. De Pasquale, A.M. & Giostri, A. & Romano, M.C. & Chiesa, P. & Demeco, T. & Tani, S., 2017. "District heating by drinking water heat pump: Modelling and energy analysis of a case study in the city of Milan," Energy, Elsevier, vol. 118(C), pages 246-263.
    5. Bach, Bjarne & Werling, Jesper & Ommen, Torben & Münster, Marie & Morales, Juan M. & Elmegaard, Brian, 2016. "Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen," Energy, Elsevier, vol. 107(C), pages 321-334.
    6. Elías-Maxil, J.A. & van der Hoek, Jan Peter & Hofman, Jan & Rietveld, Luuk, 2014. "Energy in the urban water cycle: Actions to reduce the total expenditure of fossil fuels with emphasis on heat reclamation from urban water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 808-820.
    7. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    8. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kılkış, Şiir, 2021. "Transition towards urban system integration and benchmarking of an urban area to accelerate mitigation towards net-zero targets," Energy, Elsevier, vol. 236(C).
    2. Hypolite, Gautier & Boutin, Olivier & Sole, Sandrine Del & Cloarec, Jean-François & Ferrasse, Jean-Henry, 2023. "Evaluation of a water network’s energy potential in dynamic operation," Energy, Elsevier, vol. 271(C).
    3. Ziemele, Jelena & Talcis, Normunds & Osis, Ugis & Dace, Elina, 2021. "A methodology for selecting a sustainable development strategy for connecting low heat density consumers to a district heating system by cascading of heat carriers," Energy, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hypolite, Gautier & Boutin, Olivier & Sole, Sandrine Del & Cloarec, Jean-François & Ferrasse, Jean-Henry, 2023. "Evaluation of a water network’s energy potential in dynamic operation," Energy, Elsevier, vol. 271(C).
    2. Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.
    3. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    4. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    6. Cynthia Boysen & Cord Kaldemeyer & Simon Hilpert & Ilja Tuschy, 2019. "Integration of Flow Temperatures in Unit Commitment Models of Future District Heating Systems," Energies, MDPI, vol. 12(6), pages 1-19, March.
    7. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    8. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    9. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    10. Andrei David & Brian Vad Mathiesen & Helge Averfalk & Sven Werner & Henrik Lund, 2017. "Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems," Energies, MDPI, vol. 10(4), pages 1-18, April.
    11. Baldvinsson, Ivar & Nakata, Toshihiko, 2016. "A feasibility and performance assessment of a low temperature district heating system – A North Japanese case study," Energy, Elsevier, vol. 95(C), pages 155-174.
    12. Dénarié, A. & Aprile, M. & Motta, M., 2019. "Heat transmission over long pipes: New model for fast and accurate district heating simulations," Energy, Elsevier, vol. 166(C), pages 267-276.
    13. Levihn, Fabian, 2017. "CHP and heat pumps to balance renewable power production: Lessons from the district heating network in Stockholm," Energy, Elsevier, vol. 137(C), pages 670-678.
    14. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    15. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).
    16. Guelpa, Elisa & Verda, Vittorio, 2020. "Automatic fouling detection in district heating substations: Methodology and tests," Applied Energy, Elsevier, vol. 258(C).
    17. Popovski, Eftim & Fleiter, Tobias & Santos, Hugo & Leal, Vitor & Fernandes, Eduardo Oliveira, 2018. "Technical and economic feasibility of sustainable heating and cooling supply options in southern European municipalities-A case study for Matosinhos, Portugal," Energy, Elsevier, vol. 153(C), pages 311-323.
    18. Nguyen, Truong & Gustavsson, Leif & Dodoo, Ambrose & Tettey, Uniben Yao Ayikoe, 2020. "Implications of supplying district heat to a new urban residential area in Sweden," Energy, Elsevier, vol. 194(C).
    19. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
    20. van der Hoek, Jan Peter & Mol, Stefan & Giorgi, Sara & Ahmad, Jawairia Imtiaz & Liu, Gang & Medema, Gertjan, 2018. "Energy recovery from the water cycle: Thermal energy from drinking water," Energy, Elsevier, vol. 162(C), pages 977-987.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219324685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.