IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipes036054422202970x.html
   My bibliography  Save this article

Exploiting the operational flexibility of AA-CAES in energy and reserve optimization scheduling by a linear reserve model

Author

Listed:
  • Zhang, Zhi
  • Zhou, Ming
  • Chen, Yanbo
  • Li, Gengyin

Abstract

Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) is expected to play a crucial role in providing energy shifting and fast regulation to variable renewable energy generation because of its large capacity and fast response. However, due to the complex operation characteristics of AA-CAES, there are few studies on AA-CAES optimal operation providing energy and reserve for power systems. Therefore, a new robust scheduling approach is proposed, in which the operation of AA-CAES is precisely characterized by the synergetic energy and reserve market. To fully exploit the operational flexibility of AA-CAES, this paper proposes a linear reserve model of AA-CAES by quickly switching working modes. The energy storage-reserve constraint is established to ensure the deliverability of reserve services. Then, an enhanced column and constraint generation (C&CG) algorithm is proposed to solve the proposed model. Finally, the proposed method is applied to the Garver-6 bus and IEEE-118 bus systems in the MATLAB operating environment. Numerical simulation results indicate that AA-CAES participating in power system scheduling can reduce the generation and reserve cost of conventional units, and improve wind power accommodation. By quickly switching the working mode, the adjustable reserve margin of AA-CAES can be effectively improved. In addition, compared with the existing nested C&CG algorithm, the enhanced C&CG algorithm effectively improves the solution efficiency of the proposed model.

Suggested Citation

  • Zhang, Zhi & Zhou, Ming & Chen, Yanbo & Li, Gengyin, 2023. "Exploiting the operational flexibility of AA-CAES in energy and reserve optimization scheduling by a linear reserve model," Energy, Elsevier, vol. 263(PE).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s036054422202970x
    DOI: 10.1016/j.energy.2022.126084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422202970X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yaowang & Miao, Shihong & Luo, Xing & Yin, Binxin & Han, Ji & Wang, Jihong, 2020. "Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid," Applied Energy, Elsevier, vol. 261(C).
    2. Akbari, Ebrahim & Hooshmand, Rahmat-Allah & Gholipour, Mehdi & Parastegari, Moein, 2019. "Stochastic programming-based optimal bidding of compressed air energy storage with wind and thermal generation units in energy and reserve markets," Energy, Elsevier, vol. 171(C), pages 535-546.
    3. Benato, Alberto, 2017. "Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system," Energy, Elsevier, vol. 138(C), pages 419-436.
    4. Aliasghari, Parinaz & Zamani-Gargari, Milad & Mohammadi-Ivatloo, Behnam, 2018. "Look-ahead risk-constrained scheduling of wind power integrated system with compressed air energy storage (CAES) plant," Energy, Elsevier, vol. 160(C), pages 668-677.
    5. Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
    6. Cheng, Chuntian & Su, Chengguo & Wang, Peilin & Shen, Jianjian & Lu, Jianyu & Wu, Xinyu, 2018. "An MILP-based model for short-term peak shaving operation of pumped-storage hydropower plants serving multiple power grids," Energy, Elsevier, vol. 163(C), pages 722-733.
    7. Nojavan, Sayyad & Najafi-Ghalelou, Afshin & Majidi, Majid & Zare, Kazem, 2018. "Optimal bidding and offering strategies of merchant compressed air energy storage in deregulated electricity market using robust optimization approach," Energy, Elsevier, vol. 142(C), pages 250-257.
    8. Luo, Xing & Wang, Jihong & Krupke, Christopher & Wang, Yue & Sheng, Yong & Li, Jian & Xu, Yujie & Wang, Dan & Miao, Shihong & Chen, Haisheng, 2016. "Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage," Applied Energy, Elsevier, vol. 162(C), pages 589-600.
    9. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
    10. Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Wei & Qin, Haoxuan & Zhu, Qing & Bai, Jianshu & Xie, Ningning & Wang, Yazhou & Zhang, Tong & Xue, Xiaodai, 2024. "Optimal design and performance assessment of a proposed constant power operation mode for the constant volume discharging process of advanced adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
    2. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Wu, Danman & Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2021. "Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat," Energy, Elsevier, vol. 233(C).
    4. Han, Ji & Miao, Shihong & Chen, Zhe & Liu, Zhou & Li, Yaowang & Yang, Weichen & Liu, Ziwen, 2021. "Multi-View clustering and discrete consensus based tri-level coordinated control of wind farm and adiabatic compressed air energy storage for providing frequency regulation service," Applied Energy, Elsevier, vol. 304(C).
    5. Emiliano Borri & Alessio Tafone & Gabriele Comodi & Alessandro Romagnoli & Luisa F. Cabeza, 2022. "Compressed Air Energy Storage—An Overview of Research Trends and Gaps through a Bibliometric Analysis," Energies, MDPI, vol. 15(20), pages 1-21, October.
    6. Khashayar Hamedi & Shahrbanoo Sadeghi & Saeed Esfandi & Mahdi Azimian & Hessam Golmohamadi, 2021. "Eco-Emission Analysis of Multi-Carrier Microgrid Integrated with Compressed Air and Power-to-Gas Energy Storage Technologies," Sustainability, MDPI, vol. 13(9), pages 1-18, April.
    7. He, Yang & MengWang, & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2021. "Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation," Energy, Elsevier, vol. 222(C).
    8. He, Wei & Dooner, Mark & King, Marcus & Li, Dacheng & Guo, Songshan & Wang, Jihong, 2021. "Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation," Applied Energy, Elsevier, vol. 282(PA).
    9. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    10. Akbari, Ebrahim & Hooshmand, Rahmat-Allah & Gholipour, Mehdi & Parastegari, Moein, 2019. "Stochastic programming-based optimal bidding of compressed air energy storage with wind and thermal generation units in energy and reserve markets," Energy, Elsevier, vol. 171(C), pages 535-546.
    11. Roos, P. & Haselbacher, A., 2022. "Analytical modeling of advanced adiabatic compressed air energy storage: Literature review and new models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    12. Mostafa Nasouri Gilvaei & Mahmood Hosseini Imani & Mojtaba Jabbari Ghadi & Li Li & Anahita Golrang, 2021. "Profit-Based Unit Commitment for a GENCO Equipped with Compressed Air Energy Storage and Concentrating Solar Power Units," Energies, MDPI, vol. 14(3), pages 1-20, January.
    13. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Zhang, Yufei & Ling, Lanning, 2023. "Thermo-dynamic and economic analysis of a novel pumped hydro-compressed air energy storage system combined with compressed air energy storage system as a spray system," Energy, Elsevier, vol. 280(C).
    14. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    15. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    16. Paolo Maria Congedo & Cristina Baglivo & Simone Panico & Domenico Mazzeo & Nicoletta Matera, 2022. "Optimization of Micro-CAES and TES Systems for Trigeneration," Energies, MDPI, vol. 15(17), pages 1-14, August.
    17. Luo, Xing & Dooner, Mark & He, Wei & Wang, Jihong & Li, Yaowang & Li, Decai & Kiselychnyk, Oleh, 2018. "Feasibility study of a simulation software tool development for dynamic modelling and transient control of adiabatic compressed air energy storage with its electrical power system applications," Applied Energy, Elsevier, vol. 228(C), pages 1198-1219.
    18. Shang Chen & Ahmad Arabkoohsar & Guodong Chen & Mads Pagh Nielsen, 2022. "Optimization of a Hybrid Energy System with District Heating and Cooling Considering Off-Design Characteristics of Components, an Effort on Optimal Compressed Air Energy Storage Integration," Energies, MDPI, vol. 15(13), pages 1-21, June.
    19. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    20. Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pe:s036054422202970x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.