Design and downhill speed control of an electric-hydrostatic hydraulic hybrid powertrain in battery-powered rail vehicles
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.115957
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Di Zhao & Liang Chu & Nan Xu & Chengwei Sun & Yanwu Xu, 2018. "Development of a Cooperative Braking System for Front-Wheel Drive Electric Vehicles," Energies, MDPI, vol. 11(2), pages 1-24, February.
- Bravo, Rafael Rivelino Silva & De Negri, Victor Juliano & Oliveira, Amir Antonio Martins, 2018. "Design and analysis of a parallel hydraulic – pneumatic regenerative braking system for heavy-duty hybrid vehicles," Applied Energy, Elsevier, vol. 225(C), pages 60-77.
- Yi, Tong & Ma, Fei & Jin, Chun & Huang, Yanjun, 2018. "A novel coupled hydro-pneumatic energy storage system for hybrid mining trucks," Energy, Elsevier, vol. 143(C), pages 704-718.
- Wu, Wei & Hu, Jibin & Yuan, Shihua & Di, Chongfeng, 2016. "A hydraulic hybrid propulsion method for automobiles with self-adaptive system," Energy, Elsevier, vol. 114(C), pages 683-692.
- Wu, Wei & Hu, Jibin & Jing, Chongbo & Jiang, Zhonglin & Yuan, Shihua, 2014. "Investigation of energy efficient hydraulic hybrid propulsion system for automobiles," Energy, Elsevier, vol. 73(C), pages 497-505.
- Pugi, L. & Pagliai, M. & Nocentini, A. & Lutzemberger, G. & Pretto, A., 2017. "Design of a hydraulic servo-actuation fed by a regenerative braking system," Applied Energy, Elsevier, vol. 187(C), pages 96-115.
- Ramakrishnan, R. & Hiremath, Somashekhar S. & Singaperumal, M., 2014. "Design strategy for improving the energy efficiency in series hydraulic/electric synergy system," Energy, Elsevier, vol. 67(C), pages 422-434.
- Yang Yang & Chang Luo & Pengxi Li, 2017. "Regenerative Braking Control Strategy of Electric-Hydraulic Hybrid (EHH) Vehicle," Energies, MDPI, vol. 10(7), pages 1-18, July.
- Li, Liang & Li, Xujian & Wang, Xiangyu & Song, Jian & He, Kai & Li, Chenfeng, 2016. "Analysis of downshift’s improvement to energy efficiency of an electric vehicle during regenerative braking," Applied Energy, Elsevier, vol. 176(C), pages 125-137.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Lin & Zhang, Tiezhu & Lu, Liqun & Zhang, Hongxin & Yang, Jian & Zhang, Zhen, 2023. "An energy active regulation management strategy based on driving mode recognition for electro-hydraulic hybrid vehicles," Energy, Elsevier, vol. 285(C).
- Liu, Huanlong & Chen, Guanpeng & Xie, Chixin & Li, Dafa & Wang, Jiawei & Li, Shun, 2020. "Research on energy-saving characteristics of battery-powered electric-hydrostatic hydraulic hybrid rail vehicles," Energy, Elsevier, vol. 205(C).
- Cipek, Mihael & Pavković, Danijel & Krznar, Matija & Kljaić, Zdenko & Mlinarić, Tomislav Josip, 2021. "Comparative analysis of conventional diesel-electric and hypothetical battery-electric heavy haul locomotive operation in terms of fuel savings and emissions reduction potentials," Energy, Elsevier, vol. 232(C).
- Nie, Chunhui & Shao, Yimin & Mechefske, Chris K. & Cheng, Min & Wang, Liming, 2021. "Power distribution method for a parallel hydraulic-pneumatic hybrid system using a piecewise function," Energy, Elsevier, vol. 233(C).
- Qu, Shaoyang & Fassbender, David & Vacca, Andrea & Busquets, Enrique, 2021. "A high-efficient solution for electro-hydraulic actuators with energy regeneration capability," Energy, Elsevier, vol. 216(C).
- Liu, Huanlong & Wang, Xu & Tian, Hao & Gan, Shicheng & Zhou, Jianyi & Wang, Jiawei, 2024. "Energy-saving starting method of electric motor based on the battery-accumulator hybrid drive," Energy, Elsevier, vol. 286(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Chao & Sun, Tonglin & Wang, Weida & Li, Ying & Zhang, Yuhang & Zha, Mingjun, 2024. "Regenerative braking system development and perspectives for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
- Liu, Huanlong & Chen, Guanpeng & Xie, Chixin & Li, Dafa & Wang, Jiawei & Li, Shun, 2020. "Research on energy-saving characteristics of battery-powered electric-hydrostatic hydraulic hybrid rail vehicles," Energy, Elsevier, vol. 205(C).
- Hyukjoon Kwon & Monika Ivantysynova, 2020. "System Characteristics Analysis for Energy Management of Power-Split Hydraulic Hybrids," Energies, MDPI, vol. 13(7), pages 1-23, April.
- Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
- Bao, Qianqian & Zhou, Junjie & Jing, Chongbo & Zhao, Huipeng & Wu, Yi & Zhang, Zhu, 2022. "Nonlinear dynamic model for the free rotor of the swash plate-rotating hydraulic transformer," Energy, Elsevier, vol. 261(PB).
- Antonia Tamborrino & Claudio Perone & Filippo Catalano & Giacomo Squeo & Francesco Caponio & Biagio Bianchi, 2019. "Modelling Energy Consumption and Energy-Saving in High-Quality Olive Oil Decanter Centrifuge: Numerical Study and Experimental Validation," Energies, MDPI, vol. 12(13), pages 1-20, July.
- Kwon, Hyukjoon & Sprengel, Michael & Ivantysynova, Monika, 2016. "Thermal modeling of a hydraulic hybrid vehicle transmission based on thermodynamic analysis," Energy, Elsevier, vol. 116(P1), pages 650-660.
- Yu, Jin & Song, Yurun & Zhang, Huasen & Dong, Xiaohan, 2022. "Novel design of compound coupled hydro-mechanical transmission on heavy-duty vehicle for energy recycling," Energy, Elsevier, vol. 239(PD).
- Zhou, Junjie & Jing, Chongbo & Wu, Wei, 2020. "Energy efficiency modeling and validation of a novel swash plate-rotating type hydraulic transformer," Energy, Elsevier, vol. 193(C).
- Qi, Lingfei & Wu, Xiaoping & Zeng, Xiaohui & Feng, Yan & Pan, Hongye & Zhang, Zutao & Yuan, Yanping, 2020. "An electro-mechanical braking energy recovery system based on coil springs for energy saving applications in electric vehicles," Energy, Elsevier, vol. 200(C).
- Zhou, Xiaochuan & Wu, Gang & Wang, Chunyan & Zhang, Ruijun & Shi, Shuaipeng & Zhao, Wanzhong, 2024. "Cooperative optimization of energy recovery and braking feel based on vehicle speed prediction under downshifting conditions," Energy, Elsevier, vol. 301(C).
- Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
- Bravo, Rafael Rivelino Silva & De Negri, Victor Juliano & Oliveira, Amir Antonio Martins, 2018. "Design and analysis of a parallel hydraulic – pneumatic regenerative braking system for heavy-duty hybrid vehicles," Applied Energy, Elsevier, vol. 225(C), pages 60-77.
- Wang, Feng & Wu, Jiaming & Lin, Zichang & Zhang, Haoxiang & Xu, Bing, 2023. "A power-sharing electro-hydraulic actuator system to downsize electric motors for electric mobile machines," Energy, Elsevier, vol. 284(C).
- Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
- Liu, Huanlong & Wang, Xu & Tian, Hao & Gan, Shicheng & Zhou, Jianyi & Wang, Jiawei, 2024. "Energy-saving starting method of electric motor based on the battery-accumulator hybrid drive," Energy, Elsevier, vol. 286(C).
- Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
- Jia Liang & Baofeng Yao & Yonghong Xu & Hongguang Zhang & Fubin Yang & Anren Yang & Yan Wang & Yuting Wu, 2023. "Experimental Research on Performance Comparison of Compressed Air Engine under Different Operation Modes," Energies, MDPI, vol. 16(3), pages 1-17, January.
- Wu, Wei & Hu, Jibin & Yuan, Shihua & Di, Chongfeng, 2016. "A hydraulic hybrid propulsion method for automobiles with self-adaptive system," Energy, Elsevier, vol. 114(C), pages 683-692.
- Muataz Abotabik & Richard T. Meyer, 2021. "Switched Optimal Control of a Heavy-Duty Hybrid Vehicle," Energies, MDPI, vol. 14(20), pages 1-20, October.
More about this item
Keywords
Battery-powered rail vehicles (BRVs); Electric-hydrostatic hydraulic hybrid (EH3) powertrain; Hydraulic regenerative/ non-friction braking; Downhill speed control; Energy efficiency;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316470. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.