IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v186y2019ics0360544219314951.html
   My bibliography  Save this article

Innovation design and optimization management of a new drive system for plug-in hybrid electric vehicles

Author

Listed:
  • Zhang, LiPeng
  • Liu, Wei
  • Qi, Bingnan

Abstract

A multi-mode coupling drive system has been designed and controlled to improve the dynamic characteristics and fuel economy of plug-in hybrid electric vehicles, which also can make full use of the configured superiority of centralized drive systems and distributed drive systems and avoid their structural defects. The configuration evolution process, working mechanism and drive modes of the multi-mode coupling drive system are introduced. The powertrain model is established for the target vehicle. Based on Charge Depleting-Charge Sustaining energy management strategy, an Electric Vehicle-Charge Sustaining energy management strategy is developed. The Improved Real-valued Genetic Algorithm is used to optimize the system structural and control parameters, it can help prioritize the drive modes which are based on the proposed energy management strategy. While ensuring the vehicle dynamics, the best energy allocation is achieved. The results show that comparing with a series distributed drive hybrid system and the intelligent Multi-Mode Drive (i-MMD) hybrid system under the NEDC condition, the 100-km fuel consumption of the optimized multi-mode coupling drive system is reduced by 16.52% and 15.40%. Respectively, it further proves the superiority of the drive system in improving vehicle economy.

Suggested Citation

  • Zhang, LiPeng & Liu, Wei & Qi, Bingnan, 2019. "Innovation design and optimization management of a new drive system for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219314951
    DOI: 10.1016/j.energy.2019.07.153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219314951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yang & He, Qiang & Fu, Chunyun & Liao, Shuiping & Tan, Peng, 2020. "Efficiency improvement of permanent magnet synchronous motor for electric vehicles," Energy, Elsevier, vol. 213(C).
    2. Yang, Chao & Wang, Muyao & Wang, Weida & Pu, Zesong & Ma, Mingyue, 2021. "An efficient vehicle-following predictive energy management strategy for PHEV based on improved sequential quadratic programming algorithm," Energy, Elsevier, vol. 219(C).
    3. Zhang, LiPeng & Liu, Wei & Qi, BingNan, 2020. "Energy optimization of multi-mode coupling drive plug-in hybrid electric vehicles based on speed prediction," Energy, Elsevier, vol. 206(C).
    4. Wu, Yitao & Zhang, Yuanjian & Li, Guang & Shen, Jiangwei & Chen, Zheng & Liu, Yonggang, 2020. "A predictive energy management strategy for multi-mode plug-in hybrid electric vehicles based on multi neural networks," Energy, Elsevier, vol. 208(C).
    5. Chung, Cheng-Ta & Wu, Chien-Hsun & Hung, Yi-Hsuan, 2020. "Evaluation of driving performance and energy efficiency for a novel full hybrid system with dual-motor electric drive and integrated input- and output-split e-CVT," Energy, Elsevier, vol. 191(C).
    6. Yang, Yalian & Li, Pengshuai & Pei, Huanxin & Zou, Yunge, 2022. "Design of all-wheel-drive power-split hybrid configuration schemes based on hierarchical topology graph theory," Energy, Elsevier, vol. 242(C).
    7. Chung, Cheng-Ta & Wu, Chien-Hsun & Hung, Yi-Hsuan, 2021. "A design methodology for selecting energy-efficient compound split e-CVT hybrid systems with planetary gearsets based on electric circulation," Energy, Elsevier, vol. 230(C).
    8. Hu, Jianjun & Guo, Qi & Sun, Zhicheng & Yang, Dianzhao, 2023. "Study on low-frequency torsional vibration suppression of integrated electric drive system considering nonlinear factors," Energy, Elsevier, vol. 284(C).
    9. Kim, Dong-Min & Lee, Soo-Gyung & Kim, Dae-Kee & Park, Min-Ro & Lim, Myung-Seop, 2022. "Sizing and optimization process of hybrid electric propulsion system for heavy-duty vehicle based on Gaussian process modeling considering traction motor characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    10. Sun, Xilei & Zhou, Feng & Fu, Jianqin & Liu, Jingping, 2024. "Experiment and simulation study on energy flow characteristics of a battery electric vehicle throughout the entire driving range in low-temperature conditions," Energy, Elsevier, vol. 292(C).
    11. Wang, Shuai & Wu, Xiuheng & Zhao, Xueyan & Wang, Shilong & Xie, Bin & Song, Zhenghe & Wang, Dongqing, 2023. "Co-optimization energy management strategy for a novel dual-motor drive system of electric tractor considering efficiency and stability," Energy, Elsevier, vol. 281(C).
    12. Zhen Zhu & Yanpeng Yang & Dongqing Wang & Yingfeng Cai & Longhui Lai, 2022. "Energy Saving Performance of Agricultural Tractor Equipped with Mechanic-Electronic-Hydraulic Powertrain System," Agriculture, MDPI, vol. 12(3), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219314951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.