IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v182y2019icp177-186.html
   My bibliography  Save this article

Design and test of a 600-kW horizontal-axis tidal current turbine

Author

Listed:
  • Li, Yangjian
  • Liu, Hongwei
  • Lin, Yonggang
  • Li, Wei
  • Gu, Yajing

Abstract

Tidal current energy is a promising renewable energy resource. Full scale tidal current turbines (TCT) have been deployed all over the world. To verify the design methods of large TCTs with high reliability and efficiency, a 600-kW tidal current turbine was designed and tested in this study. This turbine consisted of a two-blade rotor, a low speed ratio gearbox and a medium speed generator. The turbine was grid-connected through a full-rated converter, and its speed was controlled to capture the maximum power. First, to reach high turbine performance, system design details and maximum power point tracking (MPPT) control strategy were considered. Then, the 600-kW turbine was manufactured, and an onshore test was carried out to test power transmission and control performance. The power performance of the blades and control system were further tested in the sea trial carried out in Zhoushan. Good agreement was obtained between theoretical analyses and test results. Finally, to ascertain causes for observed power fluctuations, the power spectral density (PSD) was analyzed; the results indicated that power fluctuations may be due to stream shear.

Suggested Citation

  • Li, Yangjian & Liu, Hongwei & Lin, Yonggang & Li, Wei & Gu, Yajing, 2019. "Design and test of a 600-kW horizontal-axis tidal current turbine," Energy, Elsevier, vol. 182(C), pages 177-186.
  • Handle: RePEc:eee:energy:v:182:y:2019:i:c:p:177-186
    DOI: 10.1016/j.energy.2019.05.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219310369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silva, R.N. & Nunes, M.M. & Oliveira, F.L. & Oliveira, T.F. & Brasil, A.C.P. & Pinto, M.S.S., 2023. "Dynamical analysis of a novel hybrid oceanic tidal-wave energy converter system," Energy, Elsevier, vol. 263(PD).
    2. Dong, Yongjun & Guo, Jingfu & Chen, Jianmei & Sun, Chao & Zhu, Wanqiang & Chen, Liwei & Zhang, Xueming, 2021. "Development of a 300 kW horizontal-axis tidal stream energy conversion system with adaptive variable-pitch turbine and direct-drive PMSG," Energy, Elsevier, vol. 226(C).
    3. Si, Yulin & Liu, Xiaodong & Wang, Tao & Feng, Bo & Qian, Peng & Ma, Yong & Zhang, Dahai, 2022. "State-of-the-art review and future trends of development of tidal current energy converters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Li, Haitao & Liu, Hongwei & Gu, Yajing & Lin, Yonggang & Song, Jiajun & Ding, Kewen & Gao, Zhiyuan & Hu, Weifei & Shu, Yongdong, 2024. "Design and control of a parallel-axis twin-rotor counter-rotating marine current turbine for the shallow sea conditions," Renewable Energy, Elsevier, vol. 225(C).
    5. Xiancheng Wang & Hao Li & Junhua Chen & Chuhua Jiang & Lingjie Bao, 2023. "Research on Solidity of Horizontal-Axis Tidal Current Turbine," Energies, MDPI, vol. 16(8), pages 1-17, April.
    6. Liu, Xiaodong & Chen, Zheng & Si, Yulin & Qian, Peng & Wu, He & Cui, Lin & Zhang, Dahai, 2021. "A review of tidal current energy resource assessment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Zhang, Jisheng & Zhou, Yudi & Lin, Xiangfeng & Wang, Guohui & Guo, Yakun & Chen, Hao, 2022. "Experimental investigation on wake and thrust characteristics of a twin-rotor horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 195(C), pages 701-715.
    8. Mei, Yunlei & Jing, Fengmei & Lu, Qiang & Guo, Bin, 2024. "Study on the hydrodynamic and wake characteristics of variable speed control of horizontal axis tidal turbine under surge motion," Energy, Elsevier, vol. 298(C).
    9. Sergey Shtork & Daniil Suslov & Sergey Skripkin & Ivan Litvinov & Evgeny Gorelikov, 2023. "An Overview of Active Control Techniques for Vortex Rope Mitigation in Hydraulic Turbines," Energies, MDPI, vol. 16(13), pages 1-31, July.
    10. Ikhwan, M. & Haditiar, Y. & Wafdan, R. & Ramli, M. & Muchlisin, Z.A. & Rizal, S., 2022. "M2 tidal energy extraction in the Western Waters of Aceh, Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Xu, Tongtong & Haas, Kevin A. & Gunawan, Budi, 2023. "Estimating annual energy production from short tidal current records," Renewable Energy, Elsevier, vol. 207(C), pages 105-115.
    12. Ren, He & Liu, Hongwei & Gu, Yajing & Yang, Jinhong & Lin, Yonggang & Hu, Weifei & Li, Wei, 2024. "Design and simulation of an off-grid marine current-powered seawater desalination and hydrogen production system," Renewable Energy, Elsevier, vol. 227(C).
    13. Arturo Ortega & Joseph Praful Tomy & Jonathan Shek & Stephane Paboeuf & David Ingram, 2020. "An Inter-Comparison of Dynamic, Fully Coupled, Electro-Mechanical, Models of Tidal Turbines," Energies, MDPI, vol. 13(20), pages 1-19, October.
    14. Liu, Hongwei & Ren, He & Gu, Yajing & Lin, Yonggang & Hu, Weifei & Song, Jiajun & Yang, Jinhong & Zhu, Zengxin & Li, Wei, 2023. "Design and on-site implementation of an off-grid marine current powered hydrogen production system," Applied Energy, Elsevier, vol. 330(PB).
    15. Chuhua Jiang & Xuedao Shu & Junhua Chen & Lingjie Bao & Hao Li, 2020. "Research on Performance Evaluation of Tidal Energy Turbine under Variable Velocity," Energies, MDPI, vol. 13(23), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:182:y:2019:i:c:p:177-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.