IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v159y2022ics1364032122001435.html
   My bibliography  Save this article

M2 tidal energy extraction in the Western Waters of Aceh, Indonesia

Author

Listed:
  • Ikhwan, M.
  • Haditiar, Y.
  • Wafdan, R.
  • Ramli, M.
  • Muchlisin, Z.A.
  • Rizal, S.

Abstract

The influence of the principal lunar semidiurnal tidal constituent M2 is significant in the Malacca Strait, the Andaman Sea, and the Bay of Bengal. However, in the Indian Ocean, due to depth, the influence is not as strong as in those regions. The Western Waters of Aceh are directly adjacent to the Indian Ocean, the Andaman Sea, and the Malacca Strait. This study aims to map the tidal energy potential of M2 along the west coast of Aceh. The energy derived from tides is used as renewable energy to support the government's development targets. This study considered a power formula produced by a tidal turbine. The current velocity and elevation results showed excellent results. The weak tidal currents are evenly distributed in the south of the domain, but the tidal currents are strong in the north of the research domain because of the shallower depths and narrow gaps. Based on the magnitude of the current velocity, the extracted power is significant in the northern domain, reaching 337.08 kWh in one M2 period, or 507.36 kWh in a day. This amount is obtained from the power generated when the current reaches the blade, with a minimum of 3.79 W and a maximum of 6.37 kW. The total power obtained in the conversion of electrical power units was 507.36 kWh in one day. The location with the highest extraction has a depth of 24–43 m at sea level; thus, building a tidal turbine power plant is very possible.

Suggested Citation

  • Ikhwan, M. & Haditiar, Y. & Wafdan, R. & Ramli, M. & Muchlisin, Z.A. & Rizal, S., 2022. "M2 tidal energy extraction in the Western Waters of Aceh, Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122001435
    DOI: 10.1016/j.rser.2022.112220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122001435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reyseliani, Nadhilah & Purwanto, Widodo Wahyu, 2021. "Pathway towards 100% renewable energy in Indonesia power system by 2050," Renewable Energy, Elsevier, vol. 176(C), pages 305-321.
    2. Pérez-Ortiz, Alberto & Borthwick, Alistair G.L. & McNaughton, James & Avdis, Alexandros, 2017. "Characterization of the tidal resource in Rathlin Sound," Renewable Energy, Elsevier, vol. 114(PA), pages 229-243.
    3. Neill, Simon P. & Hemer, Mark & Robins, Peter E. & Griffiths, Alana & Furnish, Aaron & Angeloudis, Athanasios, 2021. "Tidal range resource of Australia," Renewable Energy, Elsevier, vol. 170(C), pages 683-692.
    4. Evans, P. & Mason-Jones, A. & Wilson, C. & Wooldridge, C. & O'Doherty, T. & O'Doherty, D., 2015. "Constraints on extractable power from energetic tidal straits," Renewable Energy, Elsevier, vol. 81(C), pages 707-722.
    5. Mujiyanto, Sugeng & Tiess, Günter, 2013. "Secure energy supply in 2025: Indonesia's need for an energy policy strategy," Energy Policy, Elsevier, vol. 61(C), pages 31-41.
    6. T., Micha Premkumar & Chatterjee, Dhiman, 2015. "Computational analysis of flow over a cascade of S-shaped hydrofoil of fully reversible pump-turbine used in extracting tidal energy," Renewable Energy, Elsevier, vol. 77(C), pages 240-249.
    7. Li, Yangjian & Liu, Hongwei & Lin, Yonggang & Li, Wei & Gu, Yajing, 2019. "Design and test of a 600-kW horizontal-axis tidal current turbine," Energy, Elsevier, vol. 182(C), pages 177-186.
    8. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    9. Sakmani, Ahmad Safwan & Lam, Wei-Haur & Hashim, Roslan & Chong, Heap-Yih, 2013. "Site selection for tidal turbine installation in the Strait of Malacca," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 590-602.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Si, Yulin & Liu, Xiaodong & Wang, Tao & Feng, Bo & Qian, Peng & Ma, Yong & Zhang, Dahai, 2022. "State-of-the-art review and future trends of development of tidal current energy converters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Dong, Yongjun & Guo, Jingfu & Chen, Jianmei & Sun, Chao & Zhu, Wanqiang & Chen, Liwei & Zhang, Xueming, 2021. "Development of a 300 kW horizontal-axis tidal stream energy conversion system with adaptive variable-pitch turbine and direct-drive PMSG," Energy, Elsevier, vol. 226(C).
    3. Rahman, Arief & Richards, Russell & Dargusch, Paul & Wadley, David, 2023. "Pathways to reduce Indonesia’s dependence on oil and achieve longer-term decarbonization," Renewable Energy, Elsevier, vol. 202(C), pages 1305-1323.
    4. Marta-Almeida, Martinho & Cirano, Mauro & Guedes Soares, Carlos & Lessa, Guilherme C., 2017. "A numerical tidal stream energy assessment study for Baía de Todos os Santos, Brazil," Renewable Energy, Elsevier, vol. 107(C), pages 271-287.
    5. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    6. Lilia Flores Mateos & Michael Hartnett, 2020. "Hydrodynamic Effects of Tidal-Stream Power Extraction for Varying Turbine Operating Conditions," Energies, MDPI, vol. 13(12), pages 1-23, June.
    7. Acquah-Andoh, Elijah & Putra, Herdi A. & Ifelebuegu, Augustine O. & Owusu, Andrews, 2019. "Coalbed methane development in Indonesia: Design and economic analysis of upstream petroleum fiscal policy," Energy Policy, Elsevier, vol. 131(C), pages 155-167.
    8. Zou, Yidong & Hu, Wenqing & Xiao, Zhihuai & Wang, Yunhe & Chen, Jinbao & Zheng, Yang & Qian, Jing & Zeng, Yun, 2023. "Design of intelligent nonlinear robust controller for hydro-turbine governing system based on state-dynamic-measurement hybrid feedback linearization method," Renewable Energy, Elsevier, vol. 204(C), pages 635-651.
    9. Tri Purwaningsih, Vitriyani & Widodo, Tri, 2019. "Applying Tax Rate of 33,33% on Primary Energy in Indonesia," MPRA Paper 91315, University Library of Munich, Germany.
    10. Lim, Xin-Le & Lam, Wei-Haur, 2014. "Public Acceptance of Marine Renewable Energy in Malaysia," Energy Policy, Elsevier, vol. 65(C), pages 16-26.
    11. Zhang, Jisheng & Zhou, Yudi & Lin, Xiangfeng & Wang, Guohui & Guo, Yakun & Chen, Hao, 2022. "Experimental investigation on wake and thrust characteristics of a twin-rotor horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 195(C), pages 701-715.
    12. Lim, Xin-Le & Lam, Wei-Haur & Hashim, Roslan, 2015. "Feasibility of marine renewable energy to the Feed-in Tariff system in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 708-719.
    13. Chang, Ching-Ter & Lee, Hsing-Chen, 2016. "Taiwan's renewable energy strategy and energy-intensive industrial policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 456-465.
    14. Lin, Jie & Lin, Binliang & Sun, Jian & Chen, Yaling, 2017. "Numerical model simulation of island-headland induced eddies in a site for tidal current energy extraction," Renewable Energy, Elsevier, vol. 101(C), pages 204-213.
    15. Harrold, Magnus & Ouro, Pablo & O’Doherty, Tim, 2020. "Performance assessment of a tidal turbine using two flow references," Renewable Energy, Elsevier, vol. 153(C), pages 624-633.
    16. Lilia Flores Mateos & Michael Hartnett, 2019. "Incorporation of a Non-Constant Thrust Force Coefficient to Assess Tidal-Stream Energy," Energies, MDPI, vol. 12(21), pages 1-17, October.
    17. Bo Feng & Peng Qian & Yulin Si & Xiaodong Liu & Haixiao Yang & Huisheng Wen & Dahai Zhang, 2020. "Comparative Investigations of Tidal Current Velocity Prediction Considering Effect of Multi-Layer Current Velocity," Energies, MDPI, vol. 13(23), pages 1-19, December.
    18. Marsh, Philip & Penesis, Irene & Nader, Jean-Roch & Cossu, Remo, 2021. "Multi-criteria evaluation of potential Australian tidal energy sites," Renewable Energy, Elsevier, vol. 175(C), pages 453-469.
    19. Liu, Xiaodong & Feng, Bo & Liu, Di & Wang, Yiming & Zhao, Haitao & Si, Yulin & Zhang, Dahai & Qian, Peng, 2022. "Study on two-rotor interaction of counter-rotating horizontal axis tidal turbine," Energy, Elsevier, vol. 241(C).
    20. Fairley, Iain & Williamson, Benjamin J. & McIlvenny, Jason & King, Nicholas & Masters, Ian & Lewis, Matthew & Neill, Simon & Glasby, David & Coles, Daniel & Powell, Ben & Naylor, Keith & Robinson, Max, 2022. "Drone-based large-scale particle image velocimetry applied to tidal stream energy resource assessment," Renewable Energy, Elsevier, vol. 196(C), pages 839-855.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122001435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.