IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0188299.html
   My bibliography  Save this article

Second-generation p-values: Improved rigor, reproducibility, & transparency in statistical analyses

Author

Listed:
  • Jeffrey D Blume
  • Lucy D’Agostino McGowan
  • William D Dupont
  • Robert A Greevy Jr.

Abstract

Verifying that a statistically significant result is scientifically meaningful is not only good scientific practice, it is a natural way to control the Type I error rate. Here we introduce a novel extension of the p-value—a second-generation p-value (pδ)–that formally accounts for scientific relevance and leverages this natural Type I Error control. The approach relies on a pre-specified interval null hypothesis that represents the collection of effect sizes that are scientifically uninteresting or are practically null. The second-generation p-value is the proportion of data-supported hypotheses that are also null hypotheses. As such, second-generation p-values indicate when the data are compatible with null hypotheses (pδ = 1), or with alternative hypotheses (pδ = 0), or when the data are inconclusive (0

Suggested Citation

  • Jeffrey D Blume & Lucy D’Agostino McGowan & William D Dupont & Robert A Greevy Jr., 2018. "Second-generation p-values: Improved rigor, reproducibility, & transparency in statistical analyses," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-17, March.
  • Handle: RePEc:plo:pone00:0188299
    DOI: 10.1371/journal.pone.0188299
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188299
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0188299&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0188299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Regina Nuzzo, 2014. "Scientific method: Statistical errors," Nature, Nature, vol. 506(7487), pages 150-152, February.
    2. Ronald L. Wasserstein & Nicole A. Lazar, 2016. "The ASA's Statement on p -Values: Context, Process, and Purpose," The American Statistician, Taylor & Francis Journals, vol. 70(2), pages 129-133, May.
    3. Goodman, S.N. & Royall, R., 1988. "Evidence and scientific research," American Journal of Public Health, American Public Health Association, vol. 78(12), pages 1568-1574.
    4. Jeffrey T. Leek & Roger D. Peng, 2015. "Statistics: P values are just the tip of the iceberg," Nature, Nature, vol. 520(7549), pages 612-612, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sven-Kristjan Bormann, 2020. "dbnomics: Second Generation P-Values (SGPV) for common estimation commands in Stata," London Stata Conference 2020 11, Stata Users Group.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jyotirmoy Sarkar, 2018. "Will P†Value Triumph over Abuses and Attacks?," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(4), pages 66-71, July.
    2. Maurizio Canavari & Andreas C. Drichoutis & Jayson L. Lusk & Rodolfo M. Nayga, Jr., 2018. "How to run an experimental auction: A review of recent advances," Working Papers 2018-5, Agricultural University of Athens, Department Of Agricultural Economics.
    3. Luo, Xing & Zhu, Xu & Lim, Eng Gee, 2019. "A parametric bootstrap algorithm for cluster number determination of load pattern categorization," Energy, Elsevier, vol. 180(C), pages 50-60.
    4. Steckley, Andrew & Steckley, Noah, 2024. "Subtle Signs of Scribal Intent in the Voynich Manuscript," OSF Preprints syu3n, Center for Open Science.
    5. Johnstone, David, 2022. "Accounting research and the significance test crisis," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 89(C).
    6. Karl, Marion & Kock, Florian & Ritchie, Brent W. & Gauss, Jana, 2021. "Affective forecasting and travel decision-making: An investigation in times of a pandemic," Annals of Tourism Research, Elsevier, vol. 87(C).
    7. Chatelain, Jean-Bernard & Ralf, Kirsten, 2018. "Publish and Perish: Creative Destruction and Macroeconomic Theory," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 46(2), pages 65-101.
    8. Segurado, Pedro & Gutiérrez-Cánovas, Cayetano & Ferreira, Teresa & Branco, Paulo, 2022. "Stressor gradient coverage affects interaction identification," Ecological Modelling, Elsevier, vol. 472(C).
    9. Uwe Hassler & Marc‐Oliver Pohle, 2022. "Unlucky Number 13? Manipulating Evidence Subject to Snooping," International Statistical Review, International Statistical Institute, vol. 90(2), pages 397-410, August.
    10. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    11. Kim, Jae H., 2017. "Stock returns and investors' mood: Good day sunshine or spurious correlation?," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 94-103.
    12. Gergely Ganics & Atsushi Inoue & Barbara Rossi, 2021. "Confidence Intervals for Bias and Size Distortion in IV and Local Projections-IV Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 307-324, January.
    13. Hirschauer, Norbert & Grüner, Sven & Mußhoff, Oliver & Becker, Claudia & Jantsch, Antje, 2020. "Can p-values be meaningfully interpreted without random sampling?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 14, pages 71-91.
    14. Arthur Matsuo Yamashita Rios de Sousa & Hideki Takayasu & Misako Takayasu, 2017. "Detection of statistical asymmetries in non-stationary sign time series: Analysis of foreign exchange data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-18, May.
    15. Christina Korting & Carl Lieberman & Jordan Matsudaira & Zhuan Pei & Yi Shen, 2023. "Visual Inference and Graphical Representation in Regression Discontinuity Designs," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(3), pages 1977-2019.
    16. Oliver Schilke & Sheen S. Levine & Olenka Kacperczyk & Lynne G. Zucker, 2019. "Call for Papers-Special Issue on Experiments in Organizational Theory," Organization Science, INFORMS, vol. 30(1), pages 232-234, February.
    17. Lopez, Belen & Rangel, Celia & Fernández, Manuel, 2022. "The impact of corporate social responsibility strategy on the management and governance axis for sustainable growth," Journal of Business Research, Elsevier, vol. 150(C), pages 690-698.
    18. Michaelides, Michael, 2021. "Large sample size bias in empirical finance," Finance Research Letters, Elsevier, vol. 41(C).
    19. Kelter, Riko, 2022. "Power analysis and type I and type II error rates of Bayesian nonparametric two-sample tests for location-shifts based on the Bayes factor under Cauchy priors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    20. Scott, E. Marian, 2018. "The role of Statistics in the era of big data: Crucial, critical and under-valued," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 20-24.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0188299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.