IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v179y2019icp771-783.html
   My bibliography  Save this article

Techno-economic analysis for evaluating the potential feedstocks for producing hydro-processed renewable jet fuel in Taiwan

Author

Listed:
  • Wang, Wei-Cheng

Abstract

The feedstock has been the most significant issue for promoting a sustainable and economical renewable aviation fuel in Taiwan. In this study, the potential feedstocks available for producing hydro-processed renewable jet (HRJ) fuel locally in Taiwan were evaluated economically through the process simulation and techno-economic analysis. The productivities, H2 consumptions, product distributions and properties of the produced fuel, which strongly depend on the fatty acid content within the oil/fat feedstocks, were demonstrated and discussed. The baseline economics, sensitivity analyses and pioneer plant analyses were also conducted in accordance with the simulation results. The minimum aviation fuel selling prices (MAFPs) of all feedstocks were calculated ranging from $0.91/L∼ $2.74/L. The feedstock costs, prices of hydrogen, prices of hydro-processing catalyst and plant capacities have influences on the selling prices of renewable aviation fuel by 54%, 18%, 12% and 11%, respectively. Furthermore, although the greases have the most economical benefits among the selected feedstocks, the feedstock pretreatment processes lead to the complexity of the production and result in higher pioneer plant costs compared to the ones of plant oils. This study provides the suggestions for the government to locally select an appropriate HRJ feedstock.

Suggested Citation

  • Wang, Wei-Cheng, 2019. "Techno-economic analysis for evaluating the potential feedstocks for producing hydro-processed renewable jet fuel in Taiwan," Energy, Elsevier, vol. 179(C), pages 771-783.
  • Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:771-783
    DOI: 10.1016/j.energy.2019.04.181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219308205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chu, Pei Lin & Vanderghem, Caroline & MacLean, Heather L. & Saville, Bradley A., 2017. "Financial analysis and risk assessment of hydroprocessed renewable jet fuel production from camelina, carinata and used cooking oil," Applied Energy, Elsevier, vol. 198(C), pages 401-409.
    2. Reimer, Jeffrey J. & Zheng, Xiaojuan, 2017. "Economic analysis of an aviation bioenergy supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 945-954.
    3. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.
    4. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Masum, Farhad Hossain & Coppola, Ed & Field, John L. & Geller, Daniel & George, Sheeja & Miller, Jonathan L. & Mulvaney, Michael J. & Nana, Sanjay & Seepaul, Ramdeo & Small, Ian M. & Wright, David & D, 2023. "Supply chain optimization of sustainable aviation fuel from carinata in the Southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Siddiqui, O. & Dincer, I., 2021. "A comparative life cycle assessment of clean aviation fuels," Energy, Elsevier, vol. 234(C).
    6. Marcelo F. Pompelli & Alfredo Jarma-Orozco & Luis Alfonso Rodríguez-Páez, 2022. "Salinity in Jatropha curcas : A Review of Physiological, Biochemical, and Molecular Factors Involved," Agriculture, MDPI, vol. 12(5), pages 1-22, April.
    7. Tang, Hongbiao & Lin, Jiayu & Cao, Yang & Jibran, Khalil & Li, Jin, 2022. "Influence of NiMoP phase on hydrodeoxygenation pathways of jatropha oil," Energy, Elsevier, vol. 243(C).
    8. Morenike Ajike Peters & Carine Tondo Alves & Jude Azubuike Onwudili, 2023. "A Review of Current and Emerging Production Technologies for Biomass-Derived Sustainable Aviation Fuels," Energies, MDPI, vol. 16(16), pages 1-40, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klein, Bruno Colling & Chagas, Mateus Ferreira & Junqueira, Tassia Lopes & Rezende, Mylene Cristina Alves Ferreira & Cardoso, Terezinha de Fátima & Cavalett, Otavio & Bonomi, Antonio, 2018. "Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries," Applied Energy, Elsevier, vol. 209(C), pages 290-305.
    2. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    3. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Life cycle energy and environmental impacts of hydroprocessed renewable jet fuel production from pennycress," Applied Energy, Elsevier, vol. 297(C).
    5. Wang, Wei-Cheng & Liu, Yu-Cheng & Nugroho, Rusdan Aditya Aji, 2022. "Techno-economic analysis of renewable jet fuel production: The comparison between Fischer-Tropsch synthesis and pyrolysis," Energy, Elsevier, vol. 239(PA).
    6. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Techno-economic analysis of hydroprocessed renewable jet fuel production from pennycress oilseed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    8. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2020. "Techno-economic analysis of pennycress production, harvest and post-harvest logistics for renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    9. Santos, Catarina I. & Silva, Constança C. & Mussatto, Solange I. & Osseweijer, Patricia & van der Wielen, Luuk A.M. & Posada, John A., 2018. "Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment," Renewable Energy, Elsevier, vol. 129(PB), pages 733-747.
    10. Braun, Matthias & Grimme, Wolfgang & Oesingmann, Katrin, 2024. "Pathway to net zero: Reviewing sustainable aviation fuels, environmental impacts and pricing," Journal of Air Transport Management, Elsevier, vol. 117(C).
    11. Xie, Shaoqu & Li, Zhuoxi & Luo, Shaojuan & Zhang, Wanli, 2024. "Bioethanol to jet fuel: Current status, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Wang, Hongliang & Yang, Bin & Zhang, Qian & Zhu, Wanbin, 2020. "Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    13. Chu, Pei Lin & Vanderghem, Caroline & MacLean, Heather L. & Saville, Bradley A., 2017. "Financial analysis and risk assessment of hydroprocessed renewable jet fuel production from camelina, carinata and used cooking oil," Applied Energy, Elsevier, vol. 198(C), pages 401-409.
    14. Li, Shiliang & Li, Yanqi & Wu, Jun & Wang, Zheng & Wang, Fang & Deng, Li & Nie, Kaili, 2020. "Synthesis of low pour point bio-aviation fuel from renewable abietic acid," Renewable Energy, Elsevier, vol. 155(C), pages 1042-1050.
    15. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    17. Wu, Hanjun & Hong Tsui, Kan Wai & Ngo, Thanh & Lin, Yi-Hsin, 2020. "Impacts of aviation subsidies on regional wellbeing: Systematic review, meta-analysis and future research directions," Transport Policy, Elsevier, vol. 99(C), pages 215-239.
    18. Remigiusz Jasiński & Paula Kurzawska & Radosław Przysowa, 2021. "Characterization of Particle Emissions from a DGEN 380 Small Turbofan Fueled with ATJ Blends," Energies, MDPI, vol. 14(12), pages 1-12, June.
    19. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    20. Morenike Ajike Peters & Carine Tondo Alves & Jude Azubuike Onwudili, 2023. "A Review of Current and Emerging Production Technologies for Biomass-Derived Sustainable Aviation Fuels," Energies, MDPI, vol. 16(16), pages 1-40, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:179:y:2019:i:c:p:771-783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.