IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v175y2019icp704-721.html
   My bibliography  Save this article

Optimal battery management for vehicle-to-home and vehicle-to-grid operations in a residential case study

Author

Listed:
  • Lazzeroni, Paolo
  • Olivero, Sergio
  • Repetto, Maurizio
  • Stirano, Federico
  • Vallet, Marc

Abstract

In the mobility sector Electric Vehicles represent one of the main opportunities to ensure strong reduction of local pollution. However, their higher costs compared to gas-fuelled cars are still a barrier for their large diffusions. One possible solutions to increase EVs penetration is their use as storage within households equipped with Renewable Energy Sources enabling a flexible energy management, for instance by the Vehicle-to-Grid and/or Vehicle-to-Home scheme.

Suggested Citation

  • Lazzeroni, Paolo & Olivero, Sergio & Repetto, Maurizio & Stirano, Federico & Vallet, Marc, 2019. "Optimal battery management for vehicle-to-home and vehicle-to-grid operations in a residential case study," Energy, Elsevier, vol. 175(C), pages 704-721.
  • Handle: RePEc:eee:energy:v:175:y:2019:i:c:p:704-721
    DOI: 10.1016/j.energy.2019.03.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219305171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Colmenar-Santos, A. & de Palacio-Rodriguez, Carlos & Rosales-Asensio, Enrique & Borge-Diez, David, 2017. "Estimating the benefits of vehicle-to-home in islands: The case of the Canary Islands," Energy, Elsevier, vol. 134(C), pages 311-322.
    2. Carpaneto, E. & Lazzeroni, P. & Repetto, M., 2015. "Optimal integration of solar energy in a district heating network," Renewable Energy, Elsevier, vol. 75(C), pages 714-721.
    3. Lazzeroni, P. & Olivero, S. & Repetto, M., 2017. "Economic perspective for PV under new Italian regulatory framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 283-295.
    4. Pasaoglu, G. & Fiorello, D. & Martino, A. & Zani, L. & Zubaryeva, A. & Thiel, C., 2014. "Travel patterns and the potential use of electric cars – Results from a direct survey in six European countries," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 51-59.
    5. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    6. Bianchi, M. & De Pascale, A. & Melino, F., 2013. "Performance analysis of an integrated CHP system with thermal and Electric Energy Storage for residential application," Applied Energy, Elsevier, vol. 112(C), pages 928-938.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Xu, Wenya & Wang, Zixuan, 2022. "Operational performance and grid-support assessment of distributed flexibility practices among residential prosumers under high PV penetration," Energy, Elsevier, vol. 238(PB).
    2. Wu, Yan & Aziz, Syed Mahfuzul & Haque, Mohammed H., 2024. "Vehicle-to-home operation and multi-location charging of electric vehicles for energy cost optimisation of households with photovoltaic system and battery energy storage," Renewable Energy, Elsevier, vol. 221(C).
    3. Michel Noussan & Matteo Jarre, 2021. "Assessing Commuting Energy and Emissions Savings through Remote Working and Carpooling: Lessons from an Italian Region," Energies, MDPI, vol. 14(21), pages 1-19, November.
    4. Kai Xu & Youguang Guo & Gang Lei & Jianguo Zhu, 2023. "A Review of Flywheel Energy Storage System Technologies," Energies, MDPI, vol. 16(18), pages 1-32, September.
    5. Rafael G. Nagel & Vitor Fernão Pires & Jony L. Silveira & Armando Cordeiro & Daniel Foito, 2023. "Financial Analysis of Household Photovoltaic Self-Consumption in the Context of the Vehicle-to-Home ( V2H ) in Portugal," Energies, MDPI, vol. 16(3), pages 1-21, January.
    6. Chen, Jianhong & Zhang, Youlang & Li, Xinzhou & Sun, Bo & Liao, Qiangqiang & Tao, Yibin & Wang, Zhiqin, 2020. "Strategic integration of vehicle-to-home system with home distributed photovoltaic power generation in Shanghai," Applied Energy, Elsevier, vol. 263(C).
    7. Zhang, Miao & Kang, Jiaxi & Tang, Ruixin & Xu, Fangyuan & Fan, Yiliang & Tang, Xiongming & Zhang, Haotian, 2020. "Sharing car park system for parking units of multiple EVs in a power market," Energy, Elsevier, vol. 212(C).
    8. Riccardo Iacobucci & Raffaele Bruno & Jan-Dirk Schmöcker, 2021. "An Integrated Optimisation-Simulation Framework for Scalable Smart Charging and Relocation of Shared Autonomous Electric Vehicles," Energies, MDPI, vol. 14(12), pages 1-22, June.
    9. Ana Cabrera-Tobar & Alessandro Massi Pavan & Giovanni Petrone & Giovanni Spagnuolo, 2022. "A Review of the Optimization and Control Techniques in the Presence of Uncertainties for the Energy Management of Microgrids," Energies, MDPI, vol. 15(23), pages 1-38, December.
    10. Zhang, Youlang & Li, Yan & Tao, Yibin & Ye, Jilei & Pan, Aiqiang & Li, Xinzhou & Liao, Qiangqiang & Wang, Zhiqin, 2020. "Performance assessment of retired EV battery modules for echelon use," Energy, Elsevier, vol. 193(C).
    11. Zhou, Yuekuan, 2023. "Sustainable energy sharing districts with electrochemical battery degradation in design, planning, operation and multi-objective optimisation," Renewable Energy, Elsevier, vol. 202(C), pages 1324-1341.
    12. Niu, Jide & Li, Xiaoyuan & Tian, Zhe & Yang, Hongxing, 2024. "Uncertainty analysis of the electric vehicle potential for a household to enhance robustness in decision on the EV/V2H technologies," Applied Energy, Elsevier, vol. 365(C).
    13. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    15. Jiao, Zihao & Ran, Lun & Zhang, Yanzi & Ren, Yaping, 2021. "Robust vehicle-to-grid power dispatching operations amid sociotechnical complexities," Applied Energy, Elsevier, vol. 281(C).
    16. Carlo Villante, 2023. "A Novel SW Tool for the Evaluation of Expected Benefits of V2H Charging Devices Utilization in V2B Building Contexts," Energies, MDPI, vol. 16(7), pages 1-25, March.
    17. Anton Kersten & Artem Rodionov & Manuel Kuder & Thomas Hammarström & Anton Lesnicar & Torbjörn Thiringer, 2021. "Review of Technical Design and Safety Requirements for Vehicle Chargers and Their Infrastructure According to National Swedish and Harmonized European Standards," Energies, MDPI, vol. 14(11), pages 1-17, June.
    18. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Russo, Giuseppe, 2022. "Energy virtual networks based on electric vehicles for sustainable buildings: System modelling for comparative energy and economic analyses," Energy, Elsevier, vol. 242(C).
    19. Cristina Sousa & Evaldo Costa, 2022. "Types of Policies for the Joint Diffusion of Electric Vehicles with Renewable Energies and Their Use Worldwide," Energies, MDPI, vol. 15(20), pages 1-19, October.
    20. Raymond Kene & Thomas Olwal & Barend J. van Wyk, 2021. "Sustainable Electric Vehicle Transportation," Sustainability, MDPI, vol. 13(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Hu, Kang & Chen, Lei & Chen, Qun & Wang, Xiao-Hai & Qi, Jun & Xu, Fei & Min, Yong, 2017. "Phase-change heat storage installation in combined heat and power plants for integration of renewable energy sources into power system," Energy, Elsevier, vol. 124(C), pages 640-651.
    3. Lazzeroni, Paolo & Moretti, Francesco & Stirano, Federico, 2020. "Economic potential of PV for Italian residential end-users," Energy, Elsevier, vol. 200(C).
    4. Mubbashir Ali & Jussi Ekström & Matti Lehtonen, 2018. "Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems," Energies, MDPI, vol. 11(5), pages 1-11, May.
    5. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    6. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    7. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    8. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    9. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    10. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    11. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    12. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
    13. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    14. Wojciech Rabiega & Artur Gorzałczyński & Robert Jeszke & Paweł Mzyk & Krystian Szczepański, 2021. "How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality," Energies, MDPI, vol. 14(23), pages 1-19, November.
    15. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    16. Younghun Choi & Takuro Kobashi & Yoshiki Yamagata & Akito Murayama, 2021. "Assessment of waterfront office redevelopment plan on optimal building energy demand and rooftop photovoltaics for urban decarbonization," Papers 2108.09029, arXiv.org.
    17. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    18. Martínez-Lao, Juan & Montoya, Francisco G. & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2017. "Electric vehicles in Spain: An overview of charging systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 970-983.
    19. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    20. Sameti, Mohammad & Haghighat, Fariborz, 2018. "Integration of distributed energy storage into net-zero energy district systems: Optimum design and operation," Energy, Elsevier, vol. 153(C), pages 575-591.

    More about this item

    Keywords

    Electric vehicle; V2H; V2G; Household case study; PV;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:175:y:2019:i:c:p:704-721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.