IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v175y2019icp1067-1074.html
   My bibliography  Save this article

Pyrolysis behavior of cellulose in a fixed bed reactor: Residue evolution and effects of parameters on products distribution and bio-oil composition

Author

Listed:
  • Gao, Zixiang
  • Li, Ning
  • Yin, Siyuan
  • Yi, Weiming

Abstract

Significant discrepancies of cellulose pyrolysis behavior in a micro-scale pyrolyzer and that in a large-scale reactor hinder the industrial application of those findings obtained from the former reactor. In this work, the pyrolysis behavior of cellulose in a fixed bed reactor was investigated, especially the residue evolution and the effects of temperature, material thickness and carrier gas flow rate on the products distribution and bio-oil composition. And a possible pathway for the cyclopentanones formation was proposed and competing reactions during cellulose pyrolysis with the consideration of heat and mass transfer effect were analyzed. It was found that high temperature promoted the cellulose decomposition and favored the cellulose to produce furfural, cyclopentanones and light linear compounds (such as acetic acid, hydroxy actaldehyde), and relative low temperature (<450 °C) and thicker material thickness (>2 mm) favored the dehydration of cellulose to yield levoglucosenone and furans compounds, and fast carrier gas flow rate declined the yield of most compounds but favored the recovery of levoglucosan. The findings of present study, to some extent, could provide guidance on process optimization of cellulose pyrolysis in a large-scale reactor to produce desired chemicals.

Suggested Citation

  • Gao, Zixiang & Li, Ning & Yin, Siyuan & Yi, Weiming, 2019. "Pyrolysis behavior of cellulose in a fixed bed reactor: Residue evolution and effects of parameters on products distribution and bio-oil composition," Energy, Elsevier, vol. 175(C), pages 1067-1074.
  • Handle: RePEc:eee:energy:v:175:y:2019:i:c:p:1067-1074
    DOI: 10.1016/j.energy.2019.03.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219304980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    2. Akhtar, Javaid & Saidina Amin, NorAishah, 2012. "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5101-5109.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duan, Junrui & Hu, Haowei & Ji, Jie, 2023. "Pyrolysis mechanism of β-d-glucopyranose as a model compound of cellulose: A joint experimental and theoretical investigation," Energy, Elsevier, vol. 282(C).
    2. Stover, Luke & Caillol, Christian & Piriou, Bruno & Mayer-Laigle, Claire & Rouau, Xavier & Vaïtilingom, Gilles, 2023. "A phenomenological description of biomass powder combustion in internal combustion engines," Energy, Elsevier, vol. 274(C).
    3. Esin Apaydın Varol & Ülker Mutlu, 2023. "TGA-FTIR Analysis of Biomass Samples Based on the Thermal Decomposition Behavior of Hemicellulose, Cellulose, and Lignin," Energies, MDPI, vol. 16(9), pages 1-19, April.
    4. Fan, Yongsheng & Lu, Dongsheng & Han, Yue & Yang, Jiaheng & Qian, Cheng & Li, Binyu, 2023. "Production of light aromatics from biomass components co-pyrolyzed with polyethylene via non-thermal plasma synergistic upgrading," Energy, Elsevier, vol. 265(C).
    5. Soria-Verdugo, Antonio & Rubio-Rubio, Mariano & Goos, Elke & Riedel, Uwe, 2020. "On the characteristic heating and pyrolysis time of thermally small biomass particles in a bubbling fluidized bed reactor," Renewable Energy, Elsevier, vol. 160(C), pages 312-322.
    6. Tokmurzin, Diyar & Kuspangaliyeva, Botagoz & Aimbetov, Berik & Abylkhani, Bexultan & Inglezakis, Vassilis & Anthony, Edward J. & Sarbassov, Yerbol, 2020. "Characterization of solid char produced from pyrolysis of the organic fraction of municipal solid waste, high volatile coal and their blends," Energy, Elsevier, vol. 191(C).
    7. Liu, Shasha & Wu, Gang & Gao, Yi & Li, Bin & Feng, Yu & Zhou, Jianbin & Hu, Xun & Huang, Yong & Zhang, Shu & Zhang, Hong, 2021. "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar," Renewable Energy, Elsevier, vol. 174(C), pages 538-546.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    2. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    3. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    4. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
    5. Fernandez, Enara & Santamaria, Laura & Amutio, Maider & Artetxe, Maite & Arregi, Aitor & Lopez, Gartzen & Bilbao, Javier & Olazar, Martin, 2022. "Role of temperature in the biomass steam pyrolysis in a conical spouted bed reactor," Energy, Elsevier, vol. 238(PC).
    6. Angelos-Ikaros Altantzis & Nikolaos-Christos Kallistridis & George Stavropoulos & Anastasia Zabaniotou, 2022. "Peach Seeds Pyrolysis Integrated into a Zero Waste Biorefinery: an Experimental Study," Circular Economy and Sustainability, Springer, vol. 2(1), pages 351-382, March.
    7. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    8. Cai, Junmeng & Xu, Di & Dong, Zhujun & Yu, Xi & Yang, Yang & Banks, Scott W. & Bridgwater, Anthony V., 2018. "Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2705-2715.
    9. Farooq, Muhammad Zohaib & Zeeshan, Muhammad & Iqbal, Saeed & Ahmed, Naveed & Shah, Syed Asfand Yar, 2018. "Influence of waste tire addition on wheat straw pyrolysis yield and oil quality," Energy, Elsevier, vol. 144(C), pages 200-206.
    10. Xu, Bang & Argyle, Morris D. & Shi, Xiufeng & Goroncy, Alexander K. & Rony, Asif Hasan & Tan, Gang & Fan, Maohong, 2020. "Effects of mixture of CO2 /CH4 as pyrolysis atmosphere on pine wood pyrolysis products," Renewable Energy, Elsevier, vol. 162(C), pages 1243-1254.
    11. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    12. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Pranshu Shrivastava & Anil Kumar & Perapong Tekasakul & Su Shiung Lam & Arkom Palamanit, 2021. "Comparative Investigation of Yield and Quality of Bio-Oil and Biochar from Pyrolysis of Woody and Non-Woody Biomasses," Energies, MDPI, vol. 14(4), pages 1-23, February.
    14. Naqvi, Salman Raza & Jamshaid, Sana & Naqvi, Muhammad & Farooq, Wasif & Niazi, Muhammad Bilal Khan & Aman, Zaeem & Zubair, Muhammad & Ali, Majid & Shahbaz, Muhammad & Inayat, Abrar & Afzal, Waheed, 2018. "Potential of biomass for bioenergy in Pakistan based on present case and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1247-1258.
    15. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    16. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    17. Ahmed, Gaffer & Kishore, Nanda, 2024. "Synergistic effects on properties of biofuel and biochar produced through co-feed pyrolysis of Erythrina indica and Azadirachta indica biomass," Renewable Energy, Elsevier, vol. 227(C).
    18. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    19. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    20. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:175:y:2019:i:c:p:1067-1074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.