IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v173y2019icp59-74.html
   My bibliography  Save this article

Energy and economic analysis of air-to-air heat pumps as an alternative to domestic gas boiler heating systems in the South of Italy

Author

Listed:
  • Ala, G.
  • Orioli, A.
  • Di Gangi, A.

Abstract

According to the electricity tariff recently issued by the Italian government for the domestic heating systems fed with heat pumps (HP), an energy and economic analysis was carried out with the aim of investigating the effectiveness of the air-to-air heat pump systems (HPS) as an alternative to the traditional heating using domestic gas boilers systems (GBS). For the purpose of this study, the apartments of three residential buildings were examined. The hourly heating loads were calculated with the ASHRAE radiant time series and the coefficient of performance (COP) of the HPs was evaluated for each operating condition. The costs for the heating system installation and electricity and/or gas bills were combined with the benefits, related to the current promoting tax credit program. The study turned out that the time when the GBS convenience surpasses the HPS mainly depends on the amount of thermal energy consumed in the year, although other important features, such as the domestic electricity consumption and the kind of energy used to supply the domestic hot water system and the cookers, play a relevant role in making the best choice between HPS and GBS.

Suggested Citation

  • Ala, G. & Orioli, A. & Di Gangi, A., 2019. "Energy and economic analysis of air-to-air heat pumps as an alternative to domestic gas boiler heating systems in the South of Italy," Energy, Elsevier, vol. 173(C), pages 59-74.
  • Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:59-74
    DOI: 10.1016/j.energy.2019.02.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219302002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sørensen Torekov, Mikkel & Bahnsen, Niels & Qvale, Bjørn, 2007. "The relative competitive positions of the alternative means for domestic heating," Energy, Elsevier, vol. 32(5), pages 627-633.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Darko Goričanec & Igor Ivanovski & Jurij Krope & Danijela Urbancl, 2020. "The Exploitation of Low-Temperature Hot Water Boiler Sources with High-Temperature Heat Pump Integration," Energies, MDPI, vol. 13(23), pages 1-12, November.
    2. Fabian Ochs & William Monteleone & Georgios Dermentzis & Dietmar Siegele & Christoph Speer, 2022. "Compact Decentral Façade-Integrated Air-to-Air Heat Pumps for Serial Renovation of Multi-Apartment Buildings," Energies, MDPI, vol. 15(13), pages 1-30, June.
    3. Muhammad Abid & Neil Hewitt & Ming-Jun Huang & Christopher Wilson & Donal Cotter, 2021. "Domestic Retrofit Assessment of the Heat Pump System Considering the Impact of Heat Supply Temperature and Operating Mode of Control—A Case Study," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    4. Famoso, F. & Prestipino, M. & Brusca, S. & Galvagno, A., 2020. "Designing sustainable bioenergy from residual biomass: Site allocation criteria and energy/exergy performance indicators," Applied Energy, Elsevier, vol. 274(C).
    5. Olaia Eguiarte & Antonio Garrido-Marijuán & Pablo de Agustín-Camacho & Luis del Portillo & Ander Romero-Amorrortu, 2020. "Energy, Environmental and Economic Analysis of Air-to-Air Heat Pumps as an Alternative to Heating Electrification in Europe," Energies, MDPI, vol. 13(15), pages 1-18, August.
    6. Carroll, Zane & Couzo, Evan, 2021. "Should North Carolina require more efficient water heaters in homes? A cost-benefit analysis," Energy Policy, Elsevier, vol. 150(C).
    7. Salimi, Mohammad & Faramarzi, Davoud & Hosseinian, Seyed Hossein & Gharehpetian, Gevork B., 2020. "Replacement of natural gas with electricity to improve seismic service resilience: An application to domestic energy utilities in Iran," Energy, Elsevier, vol. 200(C).
    8. Sung-Hoon Seol & Ahmed A. Serageldin & Oh Kyung Kwon, 2020. "Experimental Research on a Heat Pump Applying a Ball-Circulating Type Automatic Fouling Cleaning System for Fish Farms," Energies, MDPI, vol. 13(22), pages 1-18, November.
    9. Jia, Jie & Lee, W.L. & Cheng, Yuanda & Tian, Qi, 2021. "Can reversible room air-conditioner be used for combined space and domestic hot water heating in subtropical dwellings? Techno-economic evidence from Hong Kong," Energy, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Osso & Stanislas Nösperger & Maxime Raynaud & Marie-Hélène Laurent & Catherine Grandclément & Aurelie Tricoire, 2017. "The structuring of air source heat pumps' prices in a retrofitting residential buildings market: what did I pay for?," Post-Print hal-02153845, HAL.
    2. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    3. Ommen, Torben & Thorsen, Jan Eric & Markussen, Wiebke Brix & Elmegaard, Brian, 2017. "Performance of ultra low temperature district heating systems with utility plant and booster heat pumps," Energy, Elsevier, vol. 137(C), pages 544-555.
    4. Natanael Bolson & Maxim Yutkin & Tadeusz Patzek, 2023. "Primary Power Analysis of a Global Electrification Scenario," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    5. Schmidt, Johannes & Leduc, Sylvain & Dotzauer, Erik & Schmid, Erwin, 2011. "Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria," Energy Policy, Elsevier, vol. 39(6), pages 3261-3280, June.
    6. Popescu, Daniela & Ungureanu, Florina & Hernández-Guerrero, Abel, 2009. "Simulation models for the analysis of space heat consumption of buildings," Energy, Elsevier, vol. 34(10), pages 1447-1453.
    7. Petrović, Stefan N. & Karlsson, Kenneth B., 2016. "Residential heat pumps in the future Danish energy system," Energy, Elsevier, vol. 114(C), pages 787-797.
    8. Hongyu Long & Ruilin Xu & Jianjun He, 2011. "Incorporating the Variability of Wind Power with Electric Heat Pumps," Energies, MDPI, vol. 4(10), pages 1-15, October.
    9. Hongyu Long & Kunyao Xu & Ruilin Xu & Jianjun He, 2012. "More Wind Power Integration with Adjusted Energy Carriers for Space Heating in Northern China," Energies, MDPI, vol. 5(9), pages 1-16, August.
    10. Aste, Niccolò & Del Pero, Claudio, 2012. "Impact of domestic and tertiary buildings heating by natural gas in the Italian context," Energy Policy, Elsevier, vol. 47(C), pages 164-171.
    11. Singh, H. & Muetze, A. & Eames, P.C., 2010. "Factors influencing the uptake of heat pump technology by the UK domestic sector," Renewable Energy, Elsevier, vol. 35(4), pages 873-878.
    12. Brkić, Dejan & Tanasković, Toma I., 2008. "Systematic approach to natural gas usage for domestic heating in urban areas," Energy, Elsevier, vol. 33(12), pages 1738-1753.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:173:y:2019:i:c:p:59-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.