IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10857-d646863.html
   My bibliography  Save this article

Domestic Retrofit Assessment of the Heat Pump System Considering the Impact of Heat Supply Temperature and Operating Mode of Control—A Case Study

Author

Listed:
  • Muhammad Abid

    (Centre for Sustainable Technologies, Ulster University, Jordanstown BT37 0QB, UK)

  • Neil Hewitt

    (Centre for Sustainable Technologies, Ulster University, Jordanstown BT37 0QB, UK)

  • Ming-Jun Huang

    (Centre for Sustainable Technologies, Ulster University, Jordanstown BT37 0QB, UK)

  • Christopher Wilson

    (Centre for Sustainable Technologies, Ulster University, Jordanstown BT37 0QB, UK)

  • Donal Cotter

    (Centre for Sustainable Technologies, Ulster University, Jordanstown BT37 0QB, UK)

Abstract

In this study, performance assessment of the variable speed compressor-based air source heat pump (ASHP) system as a domestic retrofit technology instead of fossil fuel-based heating technologies for the 1900s Mid terraced house is investigated. The assessment was conducted considering operating mode of control and heat supply temperature impact of the system. In the literature, ASHP system experimental development with variable speed mode (VSM) of control in comparison to fixed speed mode (FSM) of control at low to medium and high heat supply temperature in the context of UK was found with very limited number of studies, but without considering retrofit application. The focus of the earlier studies was on the individual components and performance improvement. The designed heat pump (HP), developed, and tested at constant heat load, simulating the real domestic heat demand under the controlled laboratory conditions and numerical modeling is utilized for the analysis purposes. The HP performance, energy demand, carbon emissions, and cost varies significantly due to changing heat supply temperature (35 °C, 45 °C, and 55 °C), control mode and accordingly the carbon emission and cost savings are achieved. The oil and gas boilers ranges from conventional to highly efficient type and evaluated in terms of annual running cost, energy consumptions, and carbon emissions in comparison with the HP system. Additionally, a comparative study with the existing retrofitted very high temperature ASHP inside the house is conducted. The developed HP at 55 °C could not defeat the very high heat supply temperature HP system (75 °C supply temperature) in performance and cost savings but become attractive at low supply temperature (35 °C). The HP system in VSM at low heat supply temperature instead of gas boiler (90% efficiency) could cut the annual carbon emissions by 59% but with additional 6% running cost for the Mid terraced test house in Belfast climatic conditions.

Suggested Citation

  • Muhammad Abid & Neil Hewitt & Ming-Jun Huang & Christopher Wilson & Donal Cotter, 2021. "Domestic Retrofit Assessment of the Heat Pump System Considering the Impact of Heat Supply Temperature and Operating Mode of Control—A Case Study," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10857-:d:646863
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10857/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10857/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hervas-Blasco, Estefanía & Pitarch, Miquel & Navarro-Peris, Emilio & Corberán, José M., 2017. "Optimal sizing of a heat pump booster for sanitary hot water production to maximize benefit for the substitution of gas boilers," Energy, Elsevier, vol. 127(C), pages 558-570.
    2. Tassou, S.A. & Marquand, C.J. & Wilson, D.R., 1983. "Comparison of the performance of capacity controlled and conventional on/off controlled heat pumps," Applied Energy, Elsevier, vol. 14(4), pages 241-256.
    3. Druckman, A. & Jackson, T., 2008. "Household energy consumption in the UK: A highly geographically and socio-economically disaggregated model," Energy Policy, Elsevier, vol. 36(8), pages 3167-3182, August.
    4. Carroll, P. & Chesser, M. & Lyons, P., 2020. "Air Source Heat Pumps field studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Jeter, S.M. & Wepfer, W.J. & Fadel, G.M. & Cowden, N.E. & Dymek, A.A., 1987. "Variable speed drive heat pump performance," Energy, Elsevier, vol. 12(12), pages 1289-1298.
    6. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    7. Ala, G. & Orioli, A. & Di Gangi, A., 2019. "Energy and economic analysis of air-to-air heat pumps as an alternative to domestic gas boiler heating systems in the South of Italy," Energy, Elsevier, vol. 173(C), pages 59-74.
    8. Singh, H. & Muetze, A. & Eames, P.C., 2010. "Factors influencing the uptake of heat pump technology by the UK domestic sector," Renewable Energy, Elsevier, vol. 35(4), pages 873-878.
    9. Marquand, C.J. & Tassou, S.A. & Wang, Y.T. & Wilson, D.R., 1984. "An economic comparison of a fixed speed, a two speed, and a variable speed vapour compression heat pump," Applied Energy, Elsevier, vol. 16(1), pages 59-66.
    10. Junghans, Lars, 2015. "Evaluation of the economic and environmental feasibility of heat pump systems in residential buildings, with varying qualities of the building envelope," Renewable Energy, Elsevier, vol. 76(C), pages 699-705.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Abid & Neil Hewitt & Ming-Jun Huang & Christopher Wilson & Donal Cotter, 2021. "Performance Analysis of the Developed Air Source Heat Pump System at Low-to-Medium and High Supply Temperatures for Irish Housing Stock Heat Load Applications," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    2. Omar Montero & Pauline Brischoux & Simon Callegari & Carolina Fraga & Matthias Rüetschi & Edouard Vionnet & Nicole Calame & Fabrice Rognon & Martin Patel & Pierre Hollmuller, 2022. "Large Air-to-Water Heat Pumps for Fuel-Boiler Substitution in Non-Retrofitted Multi-Family Buildings—Energy Performance, CO 2 Savings, and Lessons Learned in Actual Conditions of Use," Energies, MDPI, vol. 15(14), pages 1-29, July.
    3. Dhirendran Munith Kumar & Pietro Catrini & Antonio Piacentino & Maurizio Cirrincione, 2023. "Integrated Thermodynamic and Control Modeling of an Air-to-Water Heat Pump for Estimating Energy-Saving Potential and Flexibility in the Building Sector," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    4. Jaime Sieres & Ignacio Ortega & Fernando Cerdeira & Estrella Álvarez & José M. Santos, 2022. "Seasonal Efficiency of a Brine-to-Water Heat Pump with Different Control Options according to Ecodesign Standards," Clean Technol., MDPI, vol. 4(2), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Abid & Neil Hewitt & Ming-Jun Huang & Christopher Wilson & Donal Cotter, 2021. "Performance Analysis of the Developed Air Source Heat Pump System at Low-to-Medium and High Supply Temperatures for Irish Housing Stock Heat Load Applications," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    2. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    3. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    4. Charlesworth, S.M. & Faraj-Llyod, A.S. & Coupe, S.J., 2017. "Renewable energy combined with sustainable drainage: Ground source heat and pervious paving," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 912-919.
    5. García-Gil, Alejandro & Muela Maya, Sylvia & Garrido Schneider, Eduardo & Mejías Moreno, Miguel & Vázquez-Suñé, Enric & Marazuela, Miguel Ángel & Mateo Lázaro, Jesús & Sánchez-Navarro, José Ángel, 2019. "Sustainability indicator for the prevention of potential thermal interferences between groundwater heat pump systems in urban aquifers," Renewable Energy, Elsevier, vol. 134(C), pages 14-24.
    6. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    7. Peacock, Malcolm & Fragaki, Aikaterini & Matuszewski, Bogdan J, 2023. "The impact of heat electrification on the seasonal and interannual electricity demand of Great Britain," Applied Energy, Elsevier, vol. 337(C).
    8. Małgorzata Sztorc, 2022. "The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, April.
    9. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    10. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2014. "Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups," Ecological Economics, Elsevier, vol. 106(C), pages 12-32.
    11. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    12. Guo, P. & Lam, J. & Li, V., 2018. "A novel machine learning approach for identifying the drivers of domestic electricity users’ price responsiveness," Cambridge Working Papers in Economics 1844, Faculty of Economics, University of Cambridge.
    13. O'Hegarty, R. & Kinnane, O. & Lennon, D. & Colclough, S., 2022. "Air-to-water heat pumps: Review and analysis of the performance gap between in-use and product rated performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    14. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    15. Chitnis, Mona & Sorrell, Steve, 2015. "Living up to expectations: Estimating direct and indirect rebound effects for UK households," Energy Economics, Elsevier, vol. 52(S1), pages 100-116.
    16. Belaïd, Fateh & Joumni, Haitham, 2020. "Behavioral attitudes towards energy saving: Empirical evidence from France," Energy Policy, Elsevier, vol. 140(C).
    17. Bojić, Milorad & Cvetković, Dragan & Bojić, Ljubiša, 2015. "Decreasing energy use and influence to environment by radiant panel heating using different energy sources," Applied Energy, Elsevier, vol. 138(C), pages 404-413.
    18. Meier, Helena & Rehdanz, Katrin, 2010. "Determinants of residential space heating expenditures in Great Britain," Energy Economics, Elsevier, vol. 32(5), pages 949-959, September.
    19. Hyland, Marie & Leahy, Eimear & Tol, Richard S.J., 2013. "The potential for segmentation of the retail market for electricity in Ireland," Energy Policy, Elsevier, vol. 61(C), pages 349-359.
    20. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10857-:d:646863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.