IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i9p3279-3294d19801.html
   My bibliography  Save this article

More Wind Power Integration with Adjusted Energy Carriers for Space Heating in Northern China

Author

Listed:
  • Hongyu Long

    (Postdoctoral Workstation of the Chongqing Electric Power Corporation, Chongqing 400015, China)

  • Kunyao Xu

    (Chongqing Electric Power Corporation, Chongqing 400014, China)

  • Ruilin Xu

    (Chongqing Electric Power Research Institute, Chongqing 401123, China)

  • Jianjun He

    (Chongqing Electric Power Research Institute, Chongqing 401123, China)

Abstract

In Northern China, due to the high penetration of coal-fired cogeneration facilities, which are generally equipped with extraction-condensing steam turbines, lots of wind power resources may be wasted during the heating season. In contrast, considerable coal is consumed in the power generation sector. In this article, firstly it is revealed that there exists a serious divergence in the ratio of electrical to thermal energy between end users’ demand and the cogenerations’ production during off-peak load at night, which may negate active power-balancing of the electric power grid. Secondly, with respect to this divergence only occurring during off-peak load at night, a temporary proposal is given so as to enable the integration of more wind power. The authors suggest that if the energy carrier for part of the end users’ space heating is switched from heating water to electricity (e.g., electric heat pumps (EHPs) can provide space heating in the domestic sector), the ratio of electricity to heating water load should be adjusted to optimize the power dispatch between cogeneration units and wind turbines, resulting in fuel conservation. With this proposal, existing infrastructures are made full use of, and no additional ones are required. Finally a numerical simulation is performed in order to illustrate both the technical and economic feasibility of the aforementioned proposal, under ongoing infrastructures as well as electricity and space heating tariff conditions without changing participants’ benefits. The authors aim to persuade Chinese policy makers to enable EHPs to provide space heating to enable the integration of more wind power.

Suggested Citation

  • Hongyu Long & Kunyao Xu & Ruilin Xu & Jianjun He, 2012. "More Wind Power Integration with Adjusted Energy Carriers for Space Heating in Northern China," Energies, MDPI, vol. 5(9), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:9:p:3279-3294:d:19801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/9/3279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/9/3279/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
    2. Lin, Fu & Yi, Jiang, 2000. "Optimal operation of a CHP plant for space heating as a peak load regulating plant," Energy, Elsevier, vol. 25(3), pages 283-298.
    3. Liu, Yingqi & Kokko, Ari, 2010. "Wind power in China: Policy and development challenges," Energy Policy, Elsevier, vol. 38(10), pages 5520-5529, October.
    4. Partridge, Ian & Gamkhar, Shama, 2010. "The role of offsets in a post-Kyoto climate agreement: The power sector in China," Energy Policy, Elsevier, vol. 38(8), pages 4457-4466, August.
    5. Cherni, Judith A. & Kentish, Joanna, 2007. "Renewable energy policy and electricity market reforms in China," Energy Policy, Elsevier, vol. 35(7), pages 3616-3629, July.
    6. Cai, Wenjia & Wang, Can & Liu, Wenling & Mao, Ziwei & Yu, Huichao & Chen, Jining, 2009. "Sectoral analysis for international technology development and transfer: Cases of coal-fired power generation, cement and aluminium in China," Energy Policy, Elsevier, vol. 37(6), pages 2283-2291, June.
    7. Sørensen Torekov, Mikkel & Bahnsen, Niels & Qvale, Bjørn, 2007. "The relative competitive positions of the alternative means for domestic heating," Energy, Elsevier, vol. 32(5), pages 627-633.
    8. Han, Jingyi & Mol, Arthur P.J. & Lu, Yonglong & Zhang, Lei, 2009. "Onshore wind power development in China: Challenges behind a successful story," Energy Policy, Elsevier, vol. 37(8), pages 2941-2951, August.
    9. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    10. Yu, Dayang & Liang, Jun & Han, Xueshan & Zhao, Jianguo, 2011. "Profiling the regional wind power fluctuation in China," Energy Policy, Elsevier, vol. 39(1), pages 299-306, January.
    11. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    12. Tuohy, A. & O'Malley, M., 2011. "Pumped storage in systems with very high wind penetration," Energy Policy, Elsevier, vol. 39(4), pages 1965-1974, April.
    13. Lin, Jiang & Rosenquist, Gregory, 2008. "Stay cool with less work: China's new energy-efficiency standards for air conditioners," Energy Policy, Elsevier, vol. 36(3), pages 1090-1095, March.
    14. Foley, A.M. & Ó Gallachóir, B.P. & Hur, J. & Baldick, R. & McKeogh, E.J., 2010. "A strategic review of electricity systems models," Energy, Elsevier, vol. 35(12), pages 4522-4530.
    15. Yu, Dayang & Zhang, Bo & Liang, Jun & Han, Xueshan, 2011. "The influence of generation mix on the wind integrating capability of North China power grids: A modeling interpretation and potential solutions," Energy Policy, Elsevier, vol. 39(11), pages 7455-7463.
    16. Li, Li & Tan, Zhongfu & Wang, Jianhui & Xu, Jun & Cai, Chengkai & Hou, Yong, 2011. "Energy conservation and emission reduction policies for the electric power industry in China," Energy Policy, Elsevier, vol. 39(6), pages 3669-3679, June.
    17. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    18. Ngan, H.W., 2010. "Electricity regulation and electricity market reforms in China," Energy Policy, Elsevier, vol. 38(5), pages 2142-2148, May.
    19. Cai, W.G. & Wu, Y. & Zhong, Y. & Ren, H., 2009. "China building energy consumption: Situation, challenges and corresponding measures," Energy Policy, Elsevier, vol. 37(6), pages 2054-2059, June.
    20. Hongyu Long & Ruilin Xu & Jianjun He, 2011. "Incorporating the Variability of Wind Power with Electric Heat Pumps," Energies, MDPI, vol. 4(10), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Da Liu & Guowei Zhang & Baohua Huang & Weiwei Liu, 2016. "Optimum Electric Boiler Capacity Configuration in a Regional Power Grid for a Wind Power Accommodation Scenario," Energies, MDPI, vol. 9(3), pages 1-13, March.
    2. Miroslaw Wlas & Stanislaw Galla & Abdellah Kouzou & Piotr Kolodziejek, 2022. "Analysis of an Energy Management System of a Small Plant Connected to the Rural Power System," Energies, MDPI, vol. 15(3), pages 1-21, January.
    3. Ding, Zeyu & Hou, Hongjuan & Duan, Liqiang & Huang, Chang & Hu, Eric & Yu, Gang & Zhang, Yumeng & Zhang, Nan, 2021. "Simulation study on a novel solar aided combined heat and power system for heat-power decoupling," Energy, Elsevier, vol. 220(C).
    4. Quetzalcoatl Hernandez-Escobedo & Javier Garrido & Fernando Rueda-Martinez & Gerardo Alcalá & Alberto-Jesus Perea-Moreno, 2019. "Wind Power Cogeneration to Reduce Peak Electricity Demand in Mexican States Along the Gulf of Mexico," Energies, MDPI, vol. 12(12), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyu Long & Ruilin Xu & Jianjun He, 2011. "Incorporating the Variability of Wind Power with Electric Heat Pumps," Energies, MDPI, vol. 4(10), pages 1-15, October.
    2. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    3. Lam, J.C.K. & Woo, C.K. & Kahrl, F. & Yu, W.K., 2013. "What moves wind energy development in China? Show me the money!," Applied Energy, Elsevier, vol. 105(C), pages 423-429.
    4. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    5. Li, X. & Hubacek, K. & Siu, Y.L., 2012. "Wind power in China – Dream or reality?," Energy, Elsevier, vol. 37(1), pages 51-60.
    6. Jacques Després & Patrick Criqui & Silvana Mima & Nouredine Hadjsaid & Isabelle Noirot, 2014. "Variable renewable energies and storage development in long term energy modelling tools," Post-Print hal-01279467, HAL.
    7. You, Wei & Geng, Yong & Dong, Huijuan & Wilson, Jeffrey & Pan, Hengyu & Wu, Rui & Sun, Lu & Zhang, Xi & Liu, Zhiqing, 2018. "Technical and economic assessment of RES penetration by modelling China's existing energy system," Energy, Elsevier, vol. 165(PB), pages 900-910.
    8. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
    9. Ahmad, Salman & Mat Tahar, Razman & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Abdul Rahim, Ruzairi, 2016. "Application of system dynamics approach in electricity sector modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 29-37.
    10. Lunz, Benedikt & Stöcker, Philipp & Eckstein, Sascha & Nebel, Arjuna & Samadi, Sascha & Erlach, Berit & Fischedick, Manfred & Elsner, Peter & Sauer, Dirk Uwe, 2016. "Scenario-based comparative assessment of potential future electricity systems – A new methodological approach using Germany in 2050 as an example," Applied Energy, Elsevier, vol. 171(C), pages 555-580.
    11. Welsch, M. & Howells, M. & Bazilian, M. & DeCarolis, J.F. & Hermann, S. & Rogner, H.H., 2012. "Modelling elements of Smart Grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) code," Energy, Elsevier, vol. 46(1), pages 337-350.
    12. Li, Cun-bin & Li, Peng & Feng, Xia, 2014. "Analysis of wind power generation operation management risk in China," Renewable Energy, Elsevier, vol. 64(C), pages 266-275.
    13. Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu & Guan, Zhiqiang, 2019. "Optimizing for clean-heating improvements in a district energy system with high penetration of wind power," Energy, Elsevier, vol. 175(C), pages 1085-1099.
    14. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2016. "Optimization modeling to support renewables integration in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 316-325.
    15. Foley, A.M. & Leahy, P.G. & Li, K. & McKeogh, E.J. & Morrison, A.P., 2015. "A long-term analysis of pumped hydro storage to firm wind power," Applied Energy, Elsevier, vol. 137(C), pages 638-648.
    16. Li, Mingquan & Patiño-Echeverri, Dalia & Zhang, Junfeng (Jim), 2019. "Policies to promote energy efficiency and air emissions reductions in China's electric power generation sector during the 11th and 12th five-year plan periods: Achievements, remaining challenges, and ," Energy Policy, Elsevier, vol. 125(C), pages 429-444.
    17. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
    18. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    19. Liu, Xuemei, 2013. "The value of holding scarce wind resource—A cause of overinvestment in wind power capacity in China," Energy Policy, Elsevier, vol. 63(C), pages 97-100.
    20. Zhao, Xiaoli & Wang, Feng & Wang, Mei, 2012. "Large-scale utilization of wind power in China: Obstacles of conflict between market and planning," Energy Policy, Elsevier, vol. 48(C), pages 222-232.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:9:p:3279-3294:d:19801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.