IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v300y2024ics036054422401404x.html
   My bibliography  Save this article

Turbomachines seal flow resistance enhancement and leakage reduction based on flow control method with bow-shaped auxiliary teeth

Author

Listed:
  • Zhang, Mingjie
  • Yang, Jiangang
  • Zhang, Wanfu
  • Gu, Qianlei

Abstract

Improving sealing performance without clearance reduction is important for the economic and safety operation of modern turbomachines. For this purpose, this study proposes the bow-shaped auxiliary teeth to reduce the leakage. One bow-shaped auxiliary tooth is installed after each seal tooth to guide the leakage jet towards the side wall of seal tooth. Then the leakage jet attaches itself to the inner wall of cavity. The Computational Fluid Dynamics method is used to calculate the flow field in the new seal. Results show that flow impingements, flow deflections, and enhanced vena contraction effect increase the leakage flow resistance and reduce the leakage velocity. The application of the bow-shaped auxiliary teeth reduces the leakage flow rate by 43.8–46.3 % compared with the labyrinth seal. Geometry parameters analysis shows that reducing the axial distance between seal tooth and bow-shaped auxiliary tooth, and increasing the central angle of bow-shaped auxiliary tooth are beneficial for leakage reduction. With the increase in the radius of bow-shaped auxiliary tooth, the leakage firstly decreases and then changes a little.

Suggested Citation

  • Zhang, Mingjie & Yang, Jiangang & Zhang, Wanfu & Gu, Qianlei, 2024. "Turbomachines seal flow resistance enhancement and leakage reduction based on flow control method with bow-shaped auxiliary teeth," Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:energy:v:300:y:2024:i:c:s036054422401404x
    DOI: 10.1016/j.energy.2024.131631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401404X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Zhengping & Liu, Jingyuan & Zhang, Weihao & Wang, Peng, 2016. "Shroud leakage flow models and a multi-dimensional coupling CFD (computational fluid dynamics) method for shrouded turbines," Energy, Elsevier, vol. 103(C), pages 410-429.
    2. Yamamoto, Satoru & Uemura, Akihiro & Miyazawa, Hironori & Furusawa, Takashi & Yonezawa, Koichi & Umezawa, Shuichi & Ohmori, Shuichi & Suzuki, Takeshi, 2020. "A numerical and analytical coupling method for predicting the performance of intermediate-pressure steam turbines in operation," Energy, Elsevier, vol. 198(C).
    3. Zaniewski, Dawid & Klimaszewski, Piotr & Klonowicz, Piotr & Lampart, Piotr & Witanowski, Łukasz & Jędrzejewski, Łukasz & Suchocki, Tomasz & Antczak, Łukasz, 2021. "Performance of the honeycomb type sealings in organic vapour microturbines," Energy, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Qiuwan & Li, Yunzhu & Yang, Like & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Performance prediction and design optimization of turbine blade profile with deep learning method," Energy, Elsevier, vol. 254(PA).
    2. Woosung Choi & Kanmaniraja Radhakrishnan & Nam-Ho Kim & Jun Su Park, 2021. "Multi-Fidelity Surrogate Models for Predicting Averaged Heat Transfer Coefficients on Endwall of Turbine Blades," Energies, MDPI, vol. 14(2), pages 1-15, January.
    3. Zou, Zhengping & Shao, Fei & Li, Yiran & Zhang, Weihao & Berglund, Albin, 2017. "Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance," Energy, Elsevier, vol. 138(C), pages 167-184.
    4. Vadym Baha & Natalia Lishchenko & Serhiy Vanyeyev & Jana Mižáková & Tetiana Rodymchenko & Ján Piteľ, 2022. "Numerical Simulation of Gas Flow Passing through Slots of Various Shapes in Labyrinth Seals," Energies, MDPI, vol. 15(9), pages 1-12, April.
    5. Witanowski, Łukasz & Klonowicz, Piotr & Lampart, Piotr & Klimaszewski, Piotr & Suchocki, Tomasz & Jędrzejewski, Łukasz & Zaniewski, Dawid & Ziółkowski, Paweł, 2023. "Impact of rotor geometry optimization on the off-design ORC turbine performance," Energy, Elsevier, vol. 265(C).
    6. Touil, Kaddour & Ghenaiet, Adel, 2019. "Simulation and analysis of vane-blade interaction in a two-stage high-pressure axial turbine," Energy, Elsevier, vol. 172(C), pages 1291-1311.
    7. Du, Qiuwan & Yang, Like & Li, Liangliang & Liu, Tianyuan & Zhang, Di & Xie, Yonghui, 2022. "Aerodynamic design and optimization of blade end wall profile of turbomachinery based on series convolutional neural network," Energy, Elsevier, vol. 244(PA).
    8. Moriguchi, Shota & Miyazawa, Hironori & Furusawa, Takashi & Yamamoto, Satoru, 2021. "Large eddy simulation of a linear turbine cascade with a trailing edge cutback," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:300:y:2024:i:c:s036054422401404x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.