IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1219-d108585.html
   My bibliography  Save this article

Do the Different Exergy Accounting Methodologies Provide Consistent or Contradictory Results? A Case Study with the Portuguese Agricultural, Forestry and Fisheries Sector

Author

Listed:
  • Ricardo Manso

    (Marine, Environment and Technology Centre—MARETEC, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1, 1049-001 Lisbon, Portugal)

  • Tânia Sousa

    (Marine, Environment and Technology Centre—MARETEC, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1, 1049-001 Lisbon, Portugal)

  • Tiago Domingos

    (Marine, Environment and Technology Centre—MARETEC, Department of Mechanical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1, 1049-001 Lisbon, Portugal)

Abstract

Three exergy accounting approaches are used to evaluate exergy efficiency: the Energy Resources Exergy Accounting (EREA), the Natural Resources’ Exergy Accounting (NREA) and the Extended Exergy Accounting (EEA). To test the consistency of the results provided by these methodologies, we apply them to evaluate the Portuguese agricultural, forestry and fisheries (AFF) sector, from 2000 to 2012. EREA shows an increase of 30% in the efficiency of the Portuguese AFF sector, while NREA and EEA methodologies increases of 27% and 43%, respectively. Although the results are consistent for the AFF sector, the same does not happen in the fisheries subsector, whose exergetic efficiency increases 14% with the EREA but decreases 42% with the NREA approach. The ratio of output to useful exergy reveals that a better thermodynamic efficiency is not translated into a higher energy service efficiency because fishing vessels have to travel more to get the same fish. Thus, results provided by the EREA and NREA approaches are complementary and both are needed to provide a realistic picture of exergy efficiency. On the other hand, results obtained by the EEA approach are dominated by capital and environmental impacts, revealing the disproportionality between material and immaterial inputs in this methodology.

Suggested Citation

  • Ricardo Manso & Tânia Sousa & Tiago Domingos, 2017. "Do the Different Exergy Accounting Methodologies Provide Consistent or Contradictory Results? A Case Study with the Portuguese Agricultural, Forestry and Fisheries Sector," Energies, MDPI, vol. 10(8), pages 1-31, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1219-:d:108585
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahamed, J.U. & Saidur, R. & Masjuki, H.H. & Mekhilef, S. & Ali, M.B. & Furqon, M.H., 2011. "An application of energy and exergy analysis in agricultural sector of Malaysia," Energy Policy, Elsevier, vol. 39(12), pages 7922-7929.
    2. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "Assessing the sustainability of the UK society using thermodynamic concepts: Part 1," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1074-1081, June.
    3. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.
    4. Wall, Goran, 1987. "Exergy conversion in the Swedish society," Resources and Energy, Elsevier, vol. 9(1), pages 55-73, June.
    5. Ayres, Robert U. & Warr, Benjamin, 2005. "Accounting for growth: the role of physical work," Structural Change and Economic Dynamics, Elsevier, vol. 16(2), pages 181-209, June.
    6. Mei Gong & Göran Wall, 2016. "Exergy Analysis of the Supply of Energy and Material Resources in the Swedish Society," Energies, MDPI, vol. 9(9), pages 1-16, September.
    7. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "Assessing the sustainability of the UK society using thermodynamic concepts: Part 2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 956-970, June.
    8. Seckin, C. & Sciubba, E. & Bayulken, A.R., 2012. "An application of the extended exergy accounting method to the Turkish society, year 2006," Energy, Elsevier, vol. 40(1), pages 151-163.
    9. Sciubba, Enrico, 2011. "A revised calculation of the econometric factors α- and β for the Extended Exergy Accounting method," Ecological Modelling, Elsevier, vol. 222(4), pages 1060-1066.
    10. Dai, Jing & Chen, Bin & Sciubba, Enrico, 2014. "Extended exergy based ecological accounting for the transportation sector in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 229-237.
    11. Chen, G.Q. & Jiang, M.M. & Yang, Z.F. & Chen, B. & Ji, Xi & Zhou, J.B., 2009. "Exergetic assessment for ecological economic system: Chinese agriculture," Ecological Modelling, Elsevier, vol. 220(3), pages 397-410.
    12. Rocco, M.V. & Colombo, E. & Sciubba, E., 2014. "Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method," Applied Energy, Elsevier, vol. 113(C), pages 1405-1420.
    13. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    14. Dincer, I. & Hussain, M. M. & Al-Zaharnah, I., 2005. "Energy and exergy utilization in agricultural sector of Saudi Arabia," Energy Policy, Elsevier, vol. 33(11), pages 1461-1467, July.
    15. John C. V. Pezzey, 1997. "Sustainability Constraints versus "Optimality" versus Intertemporal Concern, and Axioms versus Data," Land Economics, University of Wisconsin Press, vol. 73(4), pages 448-466.
    16. Miguel Palma & Tânia Sousa & Zeus Guevara, 2016. "How Much Detail Should We Use to Compute Societal Aggregated Exergy Efficiencies?," Energies, MDPI, vol. 9(5), pages 1-13, May.
    17. Wall, Göran & Sciubba, Enrico & Naso, Vincenzo, 1994. "Exergy use in the Italian society," Energy, Elsevier, vol. 19(12), pages 1267-1274.
    18. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    19. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    20. Zeus Guevara & Tânia Sousa & Tiago Domingos, 2016. "Insights on Energy Transitions in Mexico from the Analysis of Useful Exergy 1971–2009," Energies, MDPI, vol. 9(7), pages 1-29, June.
    21. Bligh, David C. & Ismet Ugursal, V., 2012. "Extended exergy analysis of the economy of Nova Scotia, Canada," Energy, Elsevier, vol. 44(1), pages 878-890.
    22. Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
    23. Milia, Daniela & Sciubba, Enrico, 2006. "Exergy-based lumped simulation of complex systems: An interactive analysis tool," Energy, Elsevier, vol. 31(1), pages 100-111.
    24. Enrico Sciubba, 2012. "A Thermodynamically Correct Treatment of Externalities with an Exergy-Based Numeraire," Sustainability, MDPI, vol. 4(5), pages 1-25, May.
    25. Wall, Göran, 1990. "Exergy conversion in the Japanese society," Energy, Elsevier, vol. 15(5), pages 435-444.
    26. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricardo Manso & Tânia Sousa & Tiago Domingos, 2018. "The Way Forward in Quantifying Extended Exergy Efficiency," Energies, MDPI, vol. 11(10), pages 1-32, September.
    2. Yuancheng Lin & Chinhao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Analysis of Changes in the Aggregate Exergy Efficiency of China’s Energy System from 2005 to 2015," Energies, MDPI, vol. 14(8), pages 1-27, April.
    3. Tan, Ling Min & Arbabi, Hadi & Brockway, Paul E. & Densley Tingley, Danielle & Mayfield, Martin, 2019. "An ecological-thermodynamic approach to urban metabolism: Measuring resource utilization with open system network effectiveness analysis," Applied Energy, Elsevier, vol. 254(C).
    4. Kobiljon Khushvakhtzoda (Barfiev) & Dmitry Nazarov, 2021. "The Fuzzy Methodology’s Digitalization of the Biological Assets Evaluation in Agricultural Enterprises in Accordance with the IFRS," Mathematics, MDPI, vol. 9(8), pages 1-16, April.
    5. Fatemeh Nadi & Krzysztof Górnicki, 2022. "Evaluation of Sustainability of Wheat-Bread Chain Based on the Second Law of Thermodynamics: A Case Study," Sustainability, MDPI, vol. 14(21), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
    2. Ricardo Manso & Tânia Sousa & Tiago Domingos, 2018. "The Way Forward in Quantifying Extended Exergy Efficiency," Energies, MDPI, vol. 11(10), pages 1-32, September.
    3. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    4. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    5. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    6. Sousa, Tânia & Brockway, Paul E. & Cullen, Jonathan M. & Henriques, Sofia Teives & Miller, Jack & Serrenho, André Cabrera & Domingos, Tiago, 2017. "The Need for Robust, Consistent Methods in Societal Exergy Accounting," Ecological Economics, Elsevier, vol. 141(C), pages 11-21.
    7. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    8. Yang, J. & Chen, B., 2014. "Extended exergy-based sustainability accounting of a household biogas project in rural China," Energy Policy, Elsevier, vol. 68(C), pages 264-272.
    9. Seckin, C. & Sciubba, E. & Bayulken, A.R., 2012. "An application of the extended exergy accounting method to the Turkish society, year 2006," Energy, Elsevier, vol. 40(1), pages 151-163.
    10. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    11. Zhang, Bo & Chen, G.Q., 2010. "Physical sustainability assessment for the China society: Exergy-based systems account for resources use and environmental emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1527-1545, August.
    12. Byers, Edward A. & Gasparatos, Alexandros & Serrenho, André C., 2015. "A framework for the exergy analysis of future transport pathways: Application for the United Kingdom transport system 2010–2050," Energy, Elsevier, vol. 88(C), pages 849-862.
    13. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    14. Laura Felício & Sofia T. Henriques & André Serrenho & Tiago Domingos & Tânia Sousa, 2019. "Insights from Past Trends in Exergy Efficiency and Carbon Intensity of Electricity: Portugal, 1900–2014," Energies, MDPI, vol. 12(3), pages 1-22, February.
    15. Dai, Jing & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2015. "Sustainability-based economic and ecological evaluation of a rural biogas-linked agro-ecosystem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 347-355.
    16. Bligh, David C. & Ismet Ugursal, V., 2012. "Extended exergy analysis of the economy of Nova Scotia, Canada," Energy, Elsevier, vol. 44(1), pages 878-890.
    17. An, Qier & An, Haizhong & Wang, Lang & Huang, Xuan, 2014. "Structural and regional variations of natural resource production in China based on exergy," Energy, Elsevier, vol. 74(C), pages 67-77.
    18. Enrico Sciubba, 2012. "A Thermodynamically Correct Treatment of Externalities with an Exergy-Based Numeraire," Sustainability, MDPI, vol. 4(5), pages 1-25, May.
    19. Jadhao, Sachin B. & Pandit, Aniruddha B. & Bakshi, Bhavik R., 2017. "The evolving metabolism of a developing economy: India’s exergy flows over four decades," Applied Energy, Elsevier, vol. 206(C), pages 851-857.
    20. Amiri, Zahra & Asgharipour, Mohammad Reza & Campbell, Daniel E. & Armin, Mohammad, 2020. "Extended exergy analysis (EAA) of two canola farming systems in Khorramabad, Iran," Agricultural Systems, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1219-:d:108585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.