IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v167y2019icp283-296.html
   My bibliography  Save this article

Transient and thermo-economic analysis of MED-MVC desalination system

Author

Listed:
  • Elsayed, Mohamed L.
  • Mesalhy, Osama
  • Mohammed, Ramy H.
  • Chow, Louis C.

Abstract

An exergo-economic model is used to assess the performance of a multi-effect desalination plant integrated to a mechanical vapor compressor unit (MED-MVC) with a water production capacity of 1500 m3/day. The results show that the second law efficiency (ηII) is 2.8%. The MVC and evaporator units are responsible for about 39 and 52% of the total exergy destruction, respectively. The total water price (TWP) is 1.70 $/m3 when calculated using a simple conventional economic model and 1.63 $/m3 when calculated using an exergy-based cost model. Increasing the number of effects from 1 to 6 results in a 39% reduction in the specific power consumption (SPC), a 70% increase in ηII and a 24% decrease in TWP. A dynamic model is developed to investigate the effect of fluctuations of compressor work (W˙c) and inlet seawater temperature (Tsw) on the plant behavior and performance. The dynamic model results show that the disturbance in W˙c has a significant effect on the plant transient behavior and may cause the plant to cease operation while a disturbance in Tsw has only a moderate impact. Increasing Tsw above a certain value of the steady-state condition without proper control on the plant response could lead to evaporator dry out. In term of performance, a reduction in W˙c causes a decrease in the plant production capacity and SPC, while it increases the plant performance ratio (PR). On the other hand, a reduction in the inlet Tsw causes a reduction in the plant production capacity and PR and an increase in SPC for the same compressor work. Furthermore, a comparison between a MED-MVC system and a MED integrated to a thermal vapor compressor system (MED-TVC) reveals that the latter system is rather sensitive to the reduction in Tsw due to the presence of the condenser unit in the MED-TVC. The response of the MED-MVC system is slower than the MED-TVC which is due to the high thermal capacity of the preheaters for the feed in the MED-MVC.

Suggested Citation

  • Elsayed, Mohamed L. & Mesalhy, Osama & Mohammed, Ramy H. & Chow, Louis C., 2019. "Transient and thermo-economic analysis of MED-MVC desalination system," Energy, Elsevier, vol. 167(C), pages 283-296.
  • Handle: RePEc:eee:energy:v:167:y:2019:i:c:p:283-296
    DOI: 10.1016/j.energy.2018.10.145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218321418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lidia Roca & Jorge A. Sánchez & Francisco Rodríguez & Javier Bonilla & Alberto De la Calle & Manuel Berenguel, 2016. "Predictive Control Applied to a Solar Desalination Plant Connected to a Greenhouse with Daily Variation of Irrigation Water Demand," Energies, MDPI, vol. 9(3), pages 1-17, March.
    2. Usón, Sergio & Valero, Antonio & Agudelo, Andrés, 2012. "Thermoeconomics and Industrial Symbiosis. Effect of by-product integration in cost assessment," Energy, Elsevier, vol. 45(1), pages 43-51.
    3. Zejli, Driss & Ouammi, Ahmed & Sacile, Roberto & Dagdougui, Hanane & Elmidaoui, Azzeddine, 2011. "An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system," Applied Energy, Elsevier, vol. 88(11), pages 4042-4054.
    4. Sharaf, M.A. & Nafey, A.S. & García-Rodríguez, Lourdes, 2011. "Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes," Energy, Elsevier, vol. 36(5), pages 2753-2764.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Castro & Myron Alcanzare & Eugene Esparcia & Joey Ocon, 2020. "A Comparative Techno-Economic Analysis of Different Desalination Technologies in Off-Grid Islands," Energies, MDPI, vol. 13(9), pages 1-25, May.
    2. Alharbi, Sattam & Elsayed, Mohamed L. & Chow, Louis C., 2020. "Exergoeconomic analysis and optimization of an integrated system of supercritical CO2 Brayton cycle and multi-effect desalination," Energy, Elsevier, vol. 197(C).
    3. Rostamzadeh, Hadi, 2021. "A new pre-concentration scheme for brine treatment of MED-MVC desalination plants towards low-liquid discharge (LLD) with multiple self-superheating," Energy, Elsevier, vol. 225(C).
    4. You, Huailiang & Han, Jitian & Liu, Yang, 2019. "Performance assessment of a CCHP and multi-effect desalination system based on GT/ORC with inlet air precooling," Energy, Elsevier, vol. 185(C), pages 286-298.
    5. Zhang, Huafu & Tong, Lige & Zhang, Zhentao & Song, Yanchang & Yang, Junling & Yue, Yunkai & Wu, Zhenqun & Wang, Youdong & Yu, Ze & Zhang, Junhao, 2023. "A integrated mechanical vapor compression enrichment system of radioactive wastewater: Experimental study, model optimization and performance prediction," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsayed, Mohamed L. & Mesalhy, Osama & Mohammed, Ramy H. & Chow, Louis C., 2019. "Performance modeling of MED-MVC systems: Exergy-economic analysis," Energy, Elsevier, vol. 166(C), pages 552-568.
    2. Rostamzadeh, Hadi, 2021. "A new pre-concentration scheme for brine treatment of MED-MVC desalination plants towards low-liquid discharge (LLD) with multiple self-superheating," Energy, Elsevier, vol. 225(C).
    3. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    4. Stanek, Wojciech & Czarnowska, Lucyna, 2018. "Thermo-ecological cost – Szargut's proposal on exergy and ecology connection," Energy, Elsevier, vol. 165(PB), pages 1050-1059.
    5. Hamid, Mohammed O.A. & Zhang, Bo & Yang, Luopeng, 2014. "Application of field synergy principle for optimization fluid flow and convective heat transfer in a tube bundle of a pre-heater," Energy, Elsevier, vol. 76(C), pages 241-253.
    6. Colombo, Emanuela & Rocco, Matteo V. & Toro, Claudia & Sciubba, Enrico, 2015. "An exergy-based approach to the joint economic and environmental impact assessment of possible photovoltaic scenarios: A case study at a regional level in Italy," Ecological Modelling, Elsevier, vol. 318(C), pages 64-74.
    7. Wang, Qiushi & Liang, Shen & Zhu, Ziye & Wu, Gang & Su, Yuehong & Zheng, Hongfei, 2019. "Performance of seawater-filling type planting system based on solar distillation process: Numerical and experimental investigation," Applied Energy, Elsevier, vol. 250(C), pages 1225-1234.
    8. Petersen, Nils Hendrik & Arras, Maximilian & Wirsum, Manfred & Ma, Linwei, 2024. "Integration of large-scale heat pumps to assist sustainable water desalination and district cooling," Energy, Elsevier, vol. 289(C).
    9. He, Wei & Wang, Jihong, 2017. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage," Applied Energy, Elsevier, vol. 185(P1), pages 872-884.
    10. Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.
    11. Usón, Sergio & Kostowski, Wojciech J. & Stanek, Wojciech & Gazda, Wiesław, 2015. "Thermoecological cost of electricity, heat and cold generated in a trigeneration module fuelled with selected fossil and renewable fuels," Energy, Elsevier, vol. 92(P3), pages 308-319.
    12. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Abdelhay, AymanO. & Fath, HassanE.S. & Nada, S.A., 2020. "Solar driven polygeneration system for power, desalination and cooling," Energy, Elsevier, vol. 198(C).
    15. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    16. You, Huailiang & Han, Jitian & Liu, Yang & Chen, Changnian & Ge, Yi, 2020. "4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam ejector refrigerator," Energy, Elsevier, vol. 206(C).
    17. Shang, Yizi & Hei, Pengfei & Lu, Shibao & Shang, Ling & Li, Xiaofei & Wei, Yongping & Jia, Dongdong & Jiang, Dong & Ye, Yuntao & Gong, Jiaguo & Lei, Xiaohui & Hao, Mengmeng & Qiu, Yaqin & Liu, Jiahong, 2018. "China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050," Applied Energy, Elsevier, vol. 210(C), pages 643-660.
    18. Wang, Xiaoyu & Su, Mingze & Zhao, Haibo, 2021. "Process design and exergy cost analysis of a chemical looping ammonia generation system using AlN/Al2O3 as a nitrogen carrier," Energy, Elsevier, vol. 230(C).
    19. Xie, Guo & Sun, Licheng & Yan, Tiantong & Tang, Jiguo & Bao, Jingjing & Du, Min, 2018. "Model development and experimental verification for tubular solar still operating under vacuum condition," Energy, Elsevier, vol. 157(C), pages 115-130.
    20. Amaya Martínez-Gracia & Sergio Usón & Mª Teresa Pintanel & Javier Uche & Ángel A. Bayod-Rújula & Alejandro Del Amo, 2021. "Exergy Assessment and Thermo-Economic Analysis of Hybrid Solar Systems with Seasonal Storage and Heat Pump Coupling in the Social Housing Sector in Zaragoza," Energies, MDPI, vol. 14(5), pages 1-32, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:167:y:2019:i:c:p:283-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.