IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v167y2019icp260-268.html
   My bibliography  Save this article

Comparative performance and emission characteristics of peanut seed oil methyl ester (PSME) on a thermal isolated diesel engine

Author

Listed:
  • Öztürk, Uğur
  • Hazar, Hanbey
  • Yılmaz, Fikret

Abstract

In this research, cylinder liners of a diesel engine were coated with a 150 μm thick Fe2B layer using boronizing method. The upper surface of the piston was coated with a 300 μm thick CoNiCrAlYttra + NiCrBSi layer by using plasma spraying method. D-2, biodiesel (PSME-100) and blend (PSME-50) were used as test fuels. PSME fuel was produced through alkali catalyzed transesterification method. As-prepared fuels were used separately in coated (CE) and standard engines (SE) to compare performance and exhaust emission of both engines. In order to see the isolation effect of Fe2B layer, 3-D finite element transient-state analyses were carried out. According to the results, brake thermal efficiency (BTE) and exhaust gas temperature (EGT) of coated engine were considerably enhanced while brake specific fuel consumption (BSFC), CO, HC and smoke emission were decreased compared to those of standard engine. However, NOx emission of CE was higher than that of uncoated one, which was attributed to high combustion temperature and long combustion process in CE. These results were further confirmed with finite element simulation. The decreasing BSFC and increasing BTE for coated engine has been attributed to the elevated temperature of the combustion chamber by the effect of thermal insulation.

Suggested Citation

  • Öztürk, Uğur & Hazar, Hanbey & Yılmaz, Fikret, 2019. "Comparative performance and emission characteristics of peanut seed oil methyl ester (PSME) on a thermal isolated diesel engine," Energy, Elsevier, vol. 167(C), pages 260-268.
  • Handle: RePEc:eee:energy:v:167:y:2019:i:c:p:260-268
    DOI: 10.1016/j.energy.2018.10.198
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218321959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hazar, Hanbey, 2009. "Effects of biodiesel on a low heat loss diesel engine," Renewable Energy, Elsevier, vol. 34(6), pages 1533-1537.
    2. Hazar, Hanbey & Ozturk, Ugur, 2010. "The effects of Al2O3–TiO2 coating in a diesel engine on performance and emission of corn oil methyl ester," Renewable Energy, Elsevier, vol. 35(10), pages 2211-2216.
    3. MohamedMusthafa, M. & Sivapirakasam, S.P. & Udayakumar, M., 2011. "Comparative studies on fly ash coated low heat rejection diesel engine on performance and emission characteristics fueled by rice bran and pongamia methyl ester and their blend with diesel," Energy, Elsevier, vol. 36(5), pages 2343-2351.
    4. Karabektas, Murat, 2009. "The effects of turbocharger on the performance and exhaust emissions of a diesel engine fuelled with biodiesel," Renewable Energy, Elsevier, vol. 34(4), pages 989-993.
    5. Musthafa, M. Mohamed, 2017. "Development of performance and emission characteristics on coated diesel engine fuelled by biodiesel with cetane number enhancing additive," Energy, Elsevier, vol. 134(C), pages 234-239.
    6. Ramadhas, A.S. & Muraleedharan, C. & Jayaraj, S., 2005. "Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil," Renewable Energy, Elsevier, vol. 30(12), pages 1789-1800.
    7. Li, Bowen & Li, Yanfei & Liu, Haoye & Liu, Fang & Wang, Zhi & Wang, Jianxin, 2017. "Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends," Applied Energy, Elsevier, vol. 206(C), pages 425-431.
    8. How, H.G. & Teoh, Y.H. & Masjuki, H.H. & Kalam, M.A., 2012. "Impact of coconut oil blends on particulate-phase PAHs and regulated emissions from a light duty diesel engine," Energy, Elsevier, vol. 48(1), pages 500-509.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erdoğan, Sinan & Aydın, Selman & Balki, Mustafa Kemal & Sayin, Cenk, 2020. "Operational evaluation of thermal barrier coated diesel engine fueled with biodiesel/diesel blend by using MCDM method base on engine performance, emission and combustion characteristics," Renewable Energy, Elsevier, vol. 151(C), pages 698-706.
    2. Rai, Ranjeet Kumar & Sahoo, Rashmi Rekha, 2019. "Effective power and effective power density analysis for water in diesel emulsion as fuel in diesel engine performance," Energy, Elsevier, vol. 180(C), pages 893-902.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    2. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    3. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    4. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    5. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    6. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    7. Amin Nedayali & Alireza Shirneshan, 2016. "Experimental Study of the Effects of Biodiesel on the Performance of a Diesel Power Generator," Energy & Environment, , vol. 27(5), pages 553-565, August.
    8. Sadeghinezhad, E. & Kazi, S.N. & Sadeghinejad, Foad & Badarudin, A. & Mehrali, Mohammad & Sadri, Rad & Reza Safaei, Mohammad, 2014. "A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 29-44.
    9. Sadeghinezhad, E. & Kazi, S.N. & Badarudin, A. & Oon, C.S. & Zubir, M.N.M. & Mehrali, Mohammad, 2013. "A comprehensive review of bio-diesel as alternative fuel for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 410-424.
    10. Singh, Paramvir & Chauhan, S.R. & Goel, Varun, 2018. "Assessment of diesel engine combustion, performance and emission characteristics fuelled with dual fuel blends," Renewable Energy, Elsevier, vol. 125(C), pages 501-510.
    11. Musthafa, M. Mohamed, 2017. "Development of performance and emission characteristics on coated diesel engine fuelled by biodiesel with cetane number enhancing additive," Energy, Elsevier, vol. 134(C), pages 234-239.
    12. Varun, & Singh, Paramvir & Tiwari, Samaresh Kumar & Singh, Rituparn & Kumar, Naresh, 2017. "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1016-1033.
    13. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    14. Mohammed Kamil & Fatima M. Almarashda, 2023. "Economic Viability and Engine Performance Evaluation of Biodiesel Derived from Desert Palm Date Seeds," Energies, MDPI, vol. 16(3), pages 1-22, February.
    15. Yao, Mingfa & Ma, Tianyu & Wang, Hu & Zheng, Zunqing & Liu, Haifeng & Zhang, Yan, 2018. "A theoretical study on the effects of thermal barrier coating on diesel engine combustion and emission characteristics," Energy, Elsevier, vol. 162(C), pages 744-752.
    16. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    17. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    18. MohamedMusthafa, M. & Sivapirakasam, S.P. & Udayakumar, M., 2011. "Comparative studies on fly ash coated low heat rejection diesel engine on performance and emission characteristics fueled by rice bran and pongamia methyl ester and their blend with diesel," Energy, Elsevier, vol. 36(5), pages 2343-2351.
    19. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2012. "Necessity of biodiesel utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5732-5740.
    20. Mohammed I. Jahirul & Richard J. Brown & Wijitha Senadeera & Ian M. O'Hara & Zoran D. Ristovski, 2013. "The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks," Energies, MDPI, vol. 6(8), pages 1-43, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:167:y:2019:i:c:p:260-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.