IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v163y2018icp61-73.html
   My bibliography  Save this article

Experimental investigation of cavity length pulsation characteristics of jet pumps during limited operation stage

Author

Listed:
  • Wang, Jiong
  • Xu, Shuangjie
  • Cheng, Huaiyu
  • Ji, Bin
  • Zhang, Junqiang
  • Long, Xinping

Abstract

Experiments were conducted to investigate the cavity length pulsation characteristics in jet pumps with different area ratios during limited operation stage. Images of various cavitating flows were captured and analyzed to study the cavity length pulsation characteristics by high speed camera technology. It was found that the development tendency of time-averaged cavity length can be divided into two sections with different pulsation intensity by throat length. Further analysis indicated that the time-averaged cavity length is a function of area ratio and outlet pressure ratio independent of the inlet pressure. And the time-averaged cavity length decreases slowly and then faster with the increase of comprehensive parameters. Meanwhile, the cavity length pulsation can be decomposed into low frequency component and high frequency component. The pulsation intensity of low frequency component is relatively high during unstable limited operation stage, while it is at a low level during stable limited operation stage. Besides, smaller area ratio and inlet pressure result in larger pulsation intensity of low frequency component during unstable limited operation stage. The experimental points of high frequency component pulsation intensity collapsed around a V-shaped curve and it reached the minimum value when time-averaged cavity length is approximate to the throat length.

Suggested Citation

  • Wang, Jiong & Xu, Shuangjie & Cheng, Huaiyu & Ji, Bin & Zhang, Junqiang & Long, Xinping, 2018. "Experimental investigation of cavity length pulsation characteristics of jet pumps during limited operation stage," Energy, Elsevier, vol. 163(C), pages 61-73.
  • Handle: RePEc:eee:energy:v:163:y:2018:i:c:p:61-73
    DOI: 10.1016/j.energy.2018.08.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421831555X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ariafar, Kavous & Buttsworth, David & Al-Doori, Ghassan & Malpress, Ray, 2015. "Effect of mixing on the performance of wet steam ejectors," Energy, Elsevier, vol. 93(P2), pages 2030-2041.
    2. Jafarian, Ali & Azizi, Mohammad & Forghani, Pezhman, 2016. "Experimental and numerical investigation of transient phenomena in vacuum ejectors," Energy, Elsevier, vol. 102(C), pages 528-536.
    3. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    2. Huiyan Zhang & Daohang Zou & Xuelong Yang & Jiegang Mou & Qiwei Zhou & Maosen Xu, 2022. "Liquid–Gas Jet Pump: A Review," Energies, MDPI, vol. 15(19), pages 1-15, September.
    3. Ge, Mingming & Manikkam, Pratulya & Ghossein, Joe & Kumar Subramanian, Roshan & Coutier-Delgosha, Olivier & Zhang, Guangjian, 2022. "Dynamic mode decomposition to classify cavitating flow regimes induced by thermodynamic effects," Energy, Elsevier, vol. 254(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
    2. Zhang, Shaozhi & Luo, Jielin & Wang, Qin & Chen, Guangming, 2018. "Step utilization of energy with ejector in a heat driven freeze drying system," Energy, Elsevier, vol. 164(C), pages 734-744.
    3. Karthick, S.K. & Rao, Srisha M.V. & Jagadeesh, G. & Reddy, K.P.J., 2018. "Experimental parametric studies on the performance and mixing characteristics of a low area ratio rectangular supersonic gaseous ejector by varying the secondary flow rate," Energy, Elsevier, vol. 161(C), pages 832-845.
    4. Chen, Guangming & Ierin, Volodymyr & Volovyk, Oleksii & Shestopalov, Kostyantyn, 2019. "An improved cascade mechanical compression–ejector cooling cycle," Energy, Elsevier, vol. 170(C), pages 459-470.
    5. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
    6. Bi, Rongshan & Chen, Chen & Li, Jiansong & Tan, Xinshun & Xiang, Shuguang, 2018. "Research on the CFD numerical simulation of flash boiling atomization," Energy, Elsevier, vol. 165(PA), pages 768-781.
    7. Ramesh, A.S. & Sekhar, S. Joseph, 2018. "Experimental and numerical investigations on the effect of suction chamber angle and nozzle exit position of a steam-jet ejector," Energy, Elsevier, vol. 164(C), pages 1097-1113.
    8. Kittiwoot Sutthivirode & Tongchana Thongtip, 2022. "Experimental Determination of an Optimal Performance Map of a Steam Ejector Refrigeration System," Energies, MDPI, vol. 15(12), pages 1-19, June.
    9. Han, Qingyang & Liu, Changchao & Xue, Haoyuan & Zhang, Hailun & Sun, Wenhui & Sun, Wenxu & Jia, Lei, 2023. "Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy," Energy, Elsevier, vol. 282(C).
    10. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    11. Bodys, Jakub & Smolka, Jacek & Palacz, Michal & Haida, Michal & Banasiak, Krzysztof & Nowak, Andrzej J. & Hafner, Armin, 2016. "Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system," Energy, Elsevier, vol. 117(P2), pages 620-631.
    12. Sierra-Pallares, José & García del Valle, Javier & Paniagua, Jorge Muñoz & García, Javier & Méndez-Bueno, César & Castro, Francisco, 2018. "Shape optimization of a long-tapered R134a ejector mixing chamber," Energy, Elsevier, vol. 165(PA), pages 422-438.
    13. Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
    14. Llorenç Macia & Robert Castilla & Pedro Javier Gamez-Montero & Gustavo Raush, 2022. "Multi-Factor Design for a Vacuum Ejector Improvement by In-Depth Analysis of Construction Parameters," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    15. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
    16. Anas F A Elbarghthi & Saleh Mohamed & Van Vu Nguyen & Vaclav Dvorak, 2020. "CFD Based Design for Ejector Cooling System Using HFOS (1234ze(E) and 1234yf)," Energies, MDPI, vol. 13(6), pages 1-19, March.
    17. Lamberts, Olivier & Chatelain, Philippe & Bourgeois, Nicolas & Bartosiewicz, Yann, 2018. "The compound-choking theory as an explanation of the entrainment limitation in supersonic ejectors," Energy, Elsevier, vol. 158(C), pages 524-536.
    18. Yosaf, Salem & Ozcan, Hasan, 2018. "Exergoeconomic investigation of flue gas driven ejector absorption power system integrated with PEM electrolyser for hydrogen generation," Energy, Elsevier, vol. 163(C), pages 88-99.
    19. Zhang, Guojie & Dykas, Sławomir & Li, Pan & Li, Hang & Wang, Junlei, 2020. "Accurate condensing steam flow modeling in the ejector of the solar-driven refrigeration system," Energy, Elsevier, vol. 212(C).
    20. Ahmed Elatar & Brian Fricke & Vishaldeep Sharma & Kashif Nawaz, 2021. "Pressure Exchanger for Energy Recovery in a Trans-Critical CO 2 Refrigeration System," Energies, MDPI, vol. 14(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:163:y:2018:i:c:p:61-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.