IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v162y2018icp136-147.html
   My bibliography  Save this article

Relationship between erythemal UV and broadband solar irradiation at high altitude in Northwestern Argentina

Author

Listed:
  • Utrillas, M.P.
  • Marín, M.J.
  • Esteve, A.R.
  • Salazar, G.
  • Suárez, H.
  • Gandía, S.
  • Martínez-Lozano, J.A.

Abstract

An analysis of the broadband solar irradiation, IT, and the erythemal UV irradiation, IUVER, has been performed using the measurements made from 2013 to 2015 at three sites located at altitudes over 1000 m a.s.l. In Northwestern Argentina (Salta, El Rosal, and Tolar Grande). The main objective of this paper is to determine a relationship between IT and IUVER, which would allow to estimate IUVER from IT in places with few IUVER measurements available, and especially in those where is important to establish adequate photoprotection measures given their dense population and location at high altitude. The relationship between the daily values of IUVER and IT has been fitted to a linear regression (IUVER = m IT + n), showing good correlation in the three measurement sites (R2 ≥ 0.77). Besides, the IUVER/IT ratio shows an increase with altitude of 0.32 ± 0.03 units per km, indicating a more significant influence of altitude on IUVER than on IT. Total ozone column also attenuates more IUVER than IT. In order to reduce the local nature of the relationship between IUVER and IT, the clearness indices kT and kTUVER have been used to obtain a multivariable linear regression of kTUVER as a function of the solar zenith angle, θz, and kT, which shows good correlation (R2 ≥ 0.89) for the three measurement sites.

Suggested Citation

  • Utrillas, M.P. & Marín, M.J. & Esteve, A.R. & Salazar, G. & Suárez, H. & Gandía, S. & Martínez-Lozano, J.A., 2018. "Relationship between erythemal UV and broadband solar irradiation at high altitude in Northwestern Argentina," Energy, Elsevier, vol. 162(C), pages 136-147.
  • Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:136-147
    DOI: 10.1016/j.energy.2018.08.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218315354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lunche & Gong, Wei & Luo, Ming & Wang, Wenfeng & Hu, Bo & Zhang, Ming, 2015. "Comparison of different UV models for cloud effect study," Energy, Elsevier, vol. 80(C), pages 695-705.
    2. Jacovides, C.P. & Assimakopoulos, V.D. & Tymvios, F.S. & Theophilou, K. & Asimakopoulos, D.N., 2006. "Solar global UV (280–380nm) radiation and its relationship with solar global radiation measured on the island of Cyprus," Energy, Elsevier, vol. 31(14), pages 2728-2738.
    3. Santos, J.M. & Pinazo, J.M. & Cañada, J., 2003. "Methodology for generating daily clearness index index values Kt starting from the monthly average daily value K̄t. Determining the daily sequence using stochastic models," Renewable Energy, Elsevier, vol. 28(10), pages 1523-1544.
    4. Kudish, Avraham I. & Evseev, Efim G., 2011. "The analysis of solar UVB radiation as a function of solar global radiation, ozone layer thickness and aerosol optical density," Renewable Energy, Elsevier, vol. 36(6), pages 1854-1860.
    5. Kudish, A.I. & Lyubansky, V. & Evseev, E.G. & Ianetz, A., 2005. "Inter-comparison of the solar UVB, UVA and global radiation clearness and UV indices for Beer Sheva and Neve Zohar (Dead Sea), Israel," Energy, Elsevier, vol. 30(9), pages 1623-1641.
    6. Salazar, Germán & Raichijk, Carlos, 2014. "Evaluation of clear-sky conditions in high altitude sites," Renewable Energy, Elsevier, vol. 64(C), pages 197-202.
    7. Cañada, J & Pedros, G & Bosca, J.V, 2003. "Relationships between UV (0.290–0.385 μm) and broad band solar radiation hourly values in Valencia and Córdoba, Spain," Energy, Elsevier, vol. 28(3), pages 199-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lisdelys González-Rodríguez & Amauri Pereira de Oliveira & Lien Rodríguez-López & Jorge Rosas & David Contreras & Ana Carolina Baeza, 2021. "A Study of UVER in Santiago, Chile Based on Long-Term In Situ Measurements (Five Years) and Empirical Modelling," Energies, MDPI, vol. 14(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lunche & Gong, Wei & Hu, Bo & Feng, Lan & Lin, Aiwen & Zhang, Ming, 2014. "Long-term variations of ultraviolet radiation in China from measurements and model reconstructions," Energy, Elsevier, vol. 78(C), pages 928-938.
    2. Ghoneim, Adel A. & Kadad, Ibrahim M. & Altouq, Majida S., 2013. "Statistical analysis of solar UVB and global radiation in Kuwait," Energy, Elsevier, vol. 60(C), pages 23-34.
    3. Wang, Lunche & Gong, Wei & Luo, Ming & Wang, Wenfeng & Hu, Bo & Zhang, Ming, 2015. "Comparison of different UV models for cloud effect study," Energy, Elsevier, vol. 80(C), pages 695-705.
    4. Wang, Lunche & Gong, Wei & Ma, Yingying & Hu, Bo & Wang, Wenling & Zhang, Miao, 2013. "Analysis of ultraviolet radiation in Central China from observation and estimation," Energy, Elsevier, vol. 59(C), pages 764-774.
    5. Ibrahim M. Kadad & Ashraf A. Ramadan & Kandil M. Kandil & Adel A. Ghoneim, 2022. "Relationship between Ultraviolet-B Radiation and Broadband Solar Radiation under All Sky Conditions in Kuwait Hot Climate," Energies, MDPI, vol. 15(9), pages 1-19, April.
    6. Kalogirou, S.A. & Pashiardis, S. & Pashiardi, A., 2017. "Statistical analysis and inter-comparison of the global solar radiation at two sites in Cyprus," Renewable Energy, Elsevier, vol. 101(C), pages 1102-1123.
    7. Khalil, Samy Abdelmordy & Shaffie, Ashraf Mustafa, 2014. "The relationship between total solar radiation and biologically erythematic radiation over urban region of Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1092-1099.
    8. Porfirio, Anthony Carlos Silva & De Souza, José Leonaldo & Lyra, Gustavo Bastos & Maringolo Lemes, Marco Antonio, 2012. "An assessment of the global UV solar radiation under various sky conditions in Maceió-Northeastern Brazil," Energy, Elsevier, vol. 44(1), pages 584-592.
    9. Kudish, Avraham I. & Evseev, Efim G., 2011. "The analysis of solar UVB radiation as a function of solar global radiation, ozone layer thickness and aerosol optical density," Renewable Energy, Elsevier, vol. 36(6), pages 1854-1860.
    10. Jacovides, C.P. & Boland, J. & Rizou, D. & Kaltsounides, N.A. & Theoharatos, G.A., 2012. "School Students participation in monitoring solar radiation components: Preliminary results for UVB and UVA solar radiant fluxes," Renewable Energy, Elsevier, vol. 39(1), pages 367-374.
    11. Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2011. "Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil," Renewable Energy, Elsevier, vol. 36(1), pages 169-178.
    12. Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2009. "Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil," Applied Energy, Elsevier, vol. 86(3), pages 299-309, March.
    13. Lisdelys González-Rodríguez & Amauri Pereira de Oliveira & Lien Rodríguez-López & Jorge Rosas & David Contreras & Ana Carolina Baeza, 2021. "A Study of UVER in Santiago, Chile Based on Long-Term In Situ Measurements (Five Years) and Empirical Modelling," Energies, MDPI, vol. 14(2), pages 1-20, January.
    14. Corral, Nicolás & Anrique, Nicolás & Fernandes, Dalila & Parrado, Cristóbal & Cáceres, Gustavo, 2012. "Power, placement and LEC evaluation to install CSP plants in northern Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6678-6685.
    15. Wang, Lunche & Salazar, Germán Ariel & Gong, Wei & Peng, Simao & Zou, Ling & Lin, Aiwen, 2015. "An improved method for estimating the Ångström turbidity coefficient β in Central China during 1961–2010," Energy, Elsevier, vol. 81(C), pages 67-73.
    16. Leal, S.S. & Tíba, C. & Piacentini, R., 2011. "Daily UV radiation modeling with the usage of statistical correlations and artificial neural networks," Renewable Energy, Elsevier, vol. 36(12), pages 3337-3344.
    17. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Real-time prediction intervals for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 83(C), pages 234-244.
    18. Roy, Sanjoy, 2015. "Statistical estimates of short duration power generated by a photovoltaic unit in environment of scattered cloud cover," Energy, Elsevier, vol. 89(C), pages 14-23.
    19. Bilbao, J. & Miguel, A., 2013. "Contribution to the study of UV-B solar radiation in Central Spain," Renewable Energy, Elsevier, vol. 53(C), pages 79-85.
    20. Jacovides, C.P. & Assimakopoulos, V.D. & Tymvios, F.S. & Theophilou, K. & Asimakopoulos, D.N., 2006. "Solar global UV (280–380nm) radiation and its relationship with solar global radiation measured on the island of Cyprus," Energy, Elsevier, vol. 31(14), pages 2728-2738.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:162:y:2018:i:c:p:136-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.