IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i6p1854-1860.html
   My bibliography  Save this article

The analysis of solar UVB radiation as a function of solar global radiation, ozone layer thickness and aerosol optical density

Author

Listed:
  • Kudish, Avraham I.
  • Evseev, Efim G.

Abstract

Incident solar radiation (insolation) is attenuated by two different phenomena, (i) atmospheric scattering by air molecules, water vapor and aerosols, and (ii) atmospheric absorption by ozone, water and carbon dioxide. The degree of terrestrial solar radiation attenuation is a function of its optical path length, i.e., the distance the Sun’s ray traverse through the Earth’s atmosphere prior to being incident on the its surface. The attenuation by atmospheric scattering, irrespective of source, is an inverse function of the wavelength. Absorption of insolation in the atmosphere is due mainly to ozone in the ultraviolet range and water vapor in the infrared range of the solar spectrum. Ozone absorption decreases with increasing wavelength and above 350 nm there is no absorption. Thus, a priori, any changes in either the ozone layer thickness (OLT) and/or aerosol optical density (AOD) will have a greater effect on ultraviolet radiation, in general, and on UVB in particular. An empirical correlation that determines the UVB radiation intensity as a function of solar global radiation, OLT, AOD and optical path length as represented by the air mass is presented and validated by an independent database. In addition, a parameter sensitivity study was performed on the empirical correlation using two different methods. The application of the empirical correlation as a function of hour type (i.e., clear, partially cloudy and cloudy) was also investigated.

Suggested Citation

  • Kudish, Avraham I. & Evseev, Efim G., 2011. "The analysis of solar UVB radiation as a function of solar global radiation, ozone layer thickness and aerosol optical density," Renewable Energy, Elsevier, vol. 36(6), pages 1854-1860.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:6:p:1854-1860
    DOI: 10.1016/j.renene.2010.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110005628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alnaser, W. E., 1997. "Solar ultra-violet radiation changes in Bahrain," Applied Energy, Elsevier, vol. 57(1), pages 25-35, May.
    2. Kudish, A.I. & Lyubansky, V. & Evseev, E.G. & Ianetz, A., 2005. "Inter-comparison of the solar UVB, UVA and global radiation clearness and UV indices for Beer Sheva and Neve Zohar (Dead Sea), Israel," Energy, Elsevier, vol. 30(9), pages 1623-1641.
    3. Cañada, J & Pedros, G & Bosca, J.V, 2003. "Relationships between UV (0.290–0.385 μm) and broad band solar radiation hourly values in Valencia and Córdoba, Spain," Energy, Elsevier, vol. 28(3), pages 199-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Utrillas, M.P. & Marín, M.J. & Esteve, A.R. & Salazar, G. & Suárez, H. & Gandía, S. & Martínez-Lozano, J.A., 2018. "Relationship between erythemal UV and broadband solar irradiation at high altitude in Northwestern Argentina," Energy, Elsevier, vol. 162(C), pages 136-147.
    2. Gutiérrez-Trashorras, Antonio J. & Villicaña-Ortiz, Eunice & Álvarez-Álvarez, Eduardo & González-Caballín, Juan M. & Xiberta-Bernat, Jorge & Suarez-López, María J., 2018. "Attenuation processes of solar radiation. Application to the quantification of direct and diffuse solar irradiances on horizontal surfaces in Mexico by means of an overall atmospheric transmittance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 93-106.
    3. Wang, Lunche & Gong, Wei & Ma, Yingying & Hu, Bo & Wang, Wenling & Zhang, Miao, 2013. "Analysis of ultraviolet radiation in Central China from observation and estimation," Energy, Elsevier, vol. 59(C), pages 764-774.
    4. Ghoneim, Adel A. & Kadad, Ibrahim M. & Altouq, Majida S., 2013. "Statistical analysis of solar UVB and global radiation in Kuwait," Energy, Elsevier, vol. 60(C), pages 23-34.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lunche & Gong, Wei & Hu, Bo & Feng, Lan & Lin, Aiwen & Zhang, Ming, 2014. "Long-term variations of ultraviolet radiation in China from measurements and model reconstructions," Energy, Elsevier, vol. 78(C), pages 928-938.
    2. Khalil, Samy Abdelmordy & Shaffie, Ashraf Mustafa, 2014. "The relationship between total solar radiation and biologically erythematic radiation over urban region of Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1092-1099.
    3. Utrillas, M.P. & Marín, M.J. & Esteve, A.R. & Salazar, G. & Suárez, H. & Gandía, S. & Martínez-Lozano, J.A., 2018. "Relationship between erythemal UV and broadband solar irradiation at high altitude in Northwestern Argentina," Energy, Elsevier, vol. 162(C), pages 136-147.
    4. Wang, Lunche & Gong, Wei & Luo, Ming & Wang, Wenfeng & Hu, Bo & Zhang, Ming, 2015. "Comparison of different UV models for cloud effect study," Energy, Elsevier, vol. 80(C), pages 695-705.
    5. Lisdelys González-Rodríguez & Amauri Pereira de Oliveira & Lien Rodríguez-López & Jorge Rosas & David Contreras & Ana Carolina Baeza, 2021. "A Study of UVER in Santiago, Chile Based on Long-Term In Situ Measurements (Five Years) and Empirical Modelling," Energies, MDPI, vol. 14(2), pages 1-20, January.
    6. Ibrahim M. Kadad & Ashraf A. Ramadan & Kandil M. Kandil & Adel A. Ghoneim, 2022. "Relationship between Ultraviolet-B Radiation and Broadband Solar Radiation under All Sky Conditions in Kuwait Hot Climate," Energies, MDPI, vol. 15(9), pages 1-19, April.
    7. Kalogirou, S.A. & Pashiardis, S. & Pashiardi, A., 2017. "Statistical analysis and inter-comparison of the global solar radiation at two sites in Cyprus," Renewable Energy, Elsevier, vol. 101(C), pages 1102-1123.
    8. Leal, S.S. & Tíba, C. & Piacentini, R., 2011. "Daily UV radiation modeling with the usage of statistical correlations and artificial neural networks," Renewable Energy, Elsevier, vol. 36(12), pages 3337-3344.
    9. Bilbao, J. & Miguel, A., 2013. "Contribution to the study of UV-B solar radiation in Central Spain," Renewable Energy, Elsevier, vol. 53(C), pages 79-85.
    10. Jacovides, C.P. & Assimakopoulos, V.D. & Tymvios, F.S. & Theophilou, K. & Asimakopoulos, D.N., 2006. "Solar global UV (280–380nm) radiation and its relationship with solar global radiation measured on the island of Cyprus," Energy, Elsevier, vol. 31(14), pages 2728-2738.
    11. Porfirio, Anthony Carlos Silva & De Souza, José Leonaldo & Lyra, Gustavo Bastos & Maringolo Lemes, Marco Antonio, 2012. "An assessment of the global UV solar radiation under various sky conditions in Maceió-Northeastern Brazil," Energy, Elsevier, vol. 44(1), pages 584-592.
    12. Ghoneim, Adel A. & Kadad, Ibrahim M. & Altouq, Majida S., 2013. "Statistical analysis of solar UVB and global radiation in Kuwait," Energy, Elsevier, vol. 60(C), pages 23-34.
    13. Jacovides, C.P. & Boland, J. & Rizou, D. & Kaltsounides, N.A. & Theoharatos, G.A., 2012. "School Students participation in monitoring solar radiation components: Preliminary results for UVB and UVA solar radiant fluxes," Renewable Energy, Elsevier, vol. 39(1), pages 367-374.
    14. Escobedo, João F. & Gomes, Eduardo N. & Oliveira, Amauri P. & Soares, Jacyra, 2011. "Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil," Renewable Energy, Elsevier, vol. 36(1), pages 169-178.
    15. Wang, Lunche & Gong, Wei & Ma, Yingying & Hu, Bo & Wang, Wenling & Zhang, Miao, 2013. "Analysis of ultraviolet radiation in Central China from observation and estimation," Energy, Elsevier, vol. 59(C), pages 764-774.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:6:p:1854-1860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.