IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp875-885.html
   My bibliography  Save this article

Upper limits for the work extraction by nanofluid-filled selective flat-plate solar collectors

Author

Listed:
  • Shamshirgaran, Seyed Reza
  • Khalaji Assadi, Morteza
  • Badescu, Viorel
  • Al-Kayiem, Hussain H.

Abstract

The objective of this paper is to investigate the effect of simultaneous using of nanofluid and selective absorber on the improvement of work extraction by a solar flat-plate collector (FPC). Applying a precise model for the exergy factor of solar incident, it is found that the maximum power generation is higher and lower than that by the Petela-Landesberg-Press (PLP) and Carnot model, respectively. Results showed that the influence of temperature ratio (a) and geometry factor (f) on the exergy efficiency is not such significant when a FPC is working on the Earth's surface. It is also revealed that the key role of the ratio of the absorber plate's emittance to its absorptance must be given attention since only the values lower than 0.174 are allowed by the second law requirements. Furthermore, the exergy efficiency and energy efficiency would experience 10.5% and near 8% enhancement for a 7.5% increase in collector's optical efficiency. Boosting the exergy efficiency by almost 4.1% at 4% volume concentration, demonstrated that nanofluid exploitation instead of plain water would be capable of improving the power generation by the collector.

Suggested Citation

  • Shamshirgaran, Seyed Reza & Khalaji Assadi, Morteza & Badescu, Viorel & Al-Kayiem, Hussain H., 2018. "Upper limits for the work extraction by nanofluid-filled selective flat-plate solar collectors," Energy, Elsevier, vol. 160(C), pages 875-885.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:875-885
    DOI: 10.1016/j.energy.2018.06.154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218312192
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lucia, Umberto, 2013. "Stationary open systems: A brief review on contemporary theories on irreversibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1051-1062.
    2. Kaygusuz, K. & Ayhan, T., 1993. "Exergy analysis of solar-assisted heat-pump systems for domestic heating," Energy, Elsevier, vol. 18(10), pages 1077-1085.
    3. Farahat, S. & Sarhaddi, F. & Ajam, H., 2009. "Exergetic optimization of flat plate solar collectors," Renewable Energy, Elsevier, vol. 34(4), pages 1169-1174.
    4. Jilani, G. & Thomas, Ciby, 2014. "Effect of thermo-geometric parameters on entropy generation in absorber plate fin of a solar flat plate collector," Energy, Elsevier, vol. 70(C), pages 35-42.
    5. Torres R, E & Picon Nuñez, M & Cervantes de G, J, 1998. "Exergy analysis and optimization of a solar-assisted heat pump," Energy, Elsevier, vol. 23(4), pages 337-344.
    6. Chaabene, M. & Annabi, M., 1997. "A dynamic model for predicting solar plant performance and optimum control," Energy, Elsevier, vol. 22(6), pages 567-578.
    7. Farajzadeh, Ehsan & Movahed, Saeid & Hosseini, Reza, 2018. "Experimental and numerical investigations on the effect of Al2O3/TiO2H2O nanofluids on thermal efficiency of the flat plate solar collector," Renewable Energy, Elsevier, vol. 118(C), pages 122-130.
    8. Raj, Pankaj & Subudhi, Sudhakar, 2018. "A review of studies using nanofluids in flat-plate and direct absorption solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 54-74.
    9. Sharafeldin, Mahmoud Ahmed & Gróf, Gyula & Mahian, Omid, 2017. "Experimental study on the performance of a flat-plate collector using WO3/Water nanofluids," Energy, Elsevier, vol. 141(C), pages 2436-2444.
    10. Suzuki, Akio, 1988. "General theory of exergy-balance analysis and application to solar collectors," Energy, Elsevier, vol. 13(2), pages 153-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Haichuan & Lin, Guiping & Zeiny, Aimen & Bai, Lizhan & Wen, Dongsheng, 2019. "Nanoparticle-based solar vapor generation: An experimental and numerical study," Energy, Elsevier, vol. 178(C), pages 447-459.
    2. Hachicha, Ahmed Amine & Abo-Zahhad, Essam M. & Said, Zafar & Rahman, S.M.A., 2022. "Numerical and experimental investigations of the electrical and thermal performances of a novel PV thermal system," Renewable Energy, Elsevier, vol. 195(C), pages 990-1000.
    3. Seyed Reza Shamshirgaran & Hussain H. Al-Kayiem & Korada V. Sharma & Mostafa Ghasemi, 2020. "State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment," Sustainability, MDPI, vol. 12(21), pages 1-52, November.
    4. Korres, Dimitrios N. & Tzivanidis, Christos & Koronaki, Irene P. & Nitsas, Michael T., 2019. "Experimental, numerical and analytical investigation of a U-type evacuated tube collectors' array," Renewable Energy, Elsevier, vol. 135(C), pages 218-231.
    5. Akram, Naveed & Montazer, Elham & Kazi, S.N. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Zubir, Mohd Nashrul Mohd & Afzal, Asif & Muhammad, Mohd Ridha & Ali, Hafiz Muhammad & Márquez, Fausto Pedro , 2021. "Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids," Energy, Elsevier, vol. 227(C).
    6. Bhowmik, Mrinal & Muthukumar, P. & Anandalakshmi, R., 2019. "Experimental based multilayer perceptron approach for prediction of evacuated solar collector performance in humid subtropical regions," Renewable Energy, Elsevier, vol. 143(C), pages 1566-1580.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyed Reza Shamshirgaran & Hussain H. Al-Kayiem & Korada V. Sharma & Mostafa Ghasemi, 2020. "State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment," Sustainability, MDPI, vol. 12(21), pages 1-52, November.
    2. Akram, Naveed & Montazer, Elham & Kazi, S.N. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Zubir, Mohd Nashrul Mohd & Afzal, Asif & Muhammad, Mohd Ridha & Ali, Hafiz Muhammad & Márquez, Fausto Pedro , 2021. "Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids," Energy, Elsevier, vol. 227(C).
    3. Cho, Honghyun, 2015. "Comparative study on the performance and exergy efficiency of a solar hybrid heat pump using R22 and R744," Energy, Elsevier, vol. 93(P2), pages 1267-1276.
    4. Gao, Datong & Zhong, Shuai & Ren, Xiao & Kwan, Trevor Hocksun & Pei, Gang, 2022. "The energetic, exergetic, and mechanical comparison of two structurally optimized non-concentrating solar collectors for intermediate temperature applications," Renewable Energy, Elsevier, vol. 184(C), pages 881-898.
    5. Ham, Jeonggyun & Shin, Yunchan & Cho, Honghyun, 2022. "Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid," Energy, Elsevier, vol. 239(PC).
    6. Ahamed, J.U. & Saidur, R. & Masjuki, H.H., 2011. "A review on exergy analysis of vapor compression refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1593-1600, April.
    7. Badescu, Viorel, 2002. "Model of a space heating system integrating a heat pump, photothermal collectors and solar cells," Renewable Energy, Elsevier, vol. 27(4), pages 489-505.
    8. Saffarian, Mohammad Reza & Moravej, Mojtaba & Doranehgard, Mohammad Hossein, 2020. "Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid," Renewable Energy, Elsevier, vol. 146(C), pages 2316-2329.
    9. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    10. Chen, Xingyu & Zhou, Ping & Yan, Hongjie & Chen, Meijie, 2021. "Systematically investigating solar absorption performance of plasmonic nanoparticles," Energy, Elsevier, vol. 216(C).
    11. Biradar, Madagonda K. & Parmar, Dipal N. & Yadav, Ajay Kumar, 2022. "CFD and exergy analysis of subcritical/supercritical CO2 based naturally circulated solar thermal collector," Renewable Energy, Elsevier, vol. 189(C), pages 865-880.
    12. Humphrey Adun & Michael Adedeji & Ayomide Titus & Joakim James Mangai & Tonderai Ruwa, 2023. "Particle-Size Effect of Nanoparticles on the Thermal Performance of Solar Flat Plate Technology," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    13. Pathak, M.J.M. & Sanders, P.G. & Pearce, J.M., 2014. "Optimizing limited solar roof access by exergy analysis of solar thermal, photovoltaic, and hybrid photovoltaic thermal systems," Applied Energy, Elsevier, vol. 120(C), pages 115-124.
    14. Zhiyong Yang & Yiping Wang & Li Zhu, 2011. "Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors," Energies, MDPI, vol. 4(3), pages 1-13, March.
    15. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2012. "Exergy based analysis of solar air heater having discrete V-down rib roughness on absorber plate," Energy, Elsevier, vol. 37(1), pages 749-758.
    16. Jafarkazemi, Farzad & Ahmadifard, Emad, 2013. "Energetic and exergetic evaluation of flat plate solar collectors," Renewable Energy, Elsevier, vol. 56(C), pages 55-63.
    17. Dettù, Federico & Pozzato, Gabriele & Rizzo, Denise M. & Onori, Simona, 2021. "Exergy-based modeling framework for hybrid and electric ground vehicles," Applied Energy, Elsevier, vol. 300(C).
    18. khanmohammadi, Shoaib & Saadat-Targhi, Morteza, 2019. "Performance enhancement of an integrated system with solar flat plate collector for hydrogen production using waste heat recovery," Energy, Elsevier, vol. 171(C), pages 1066-1076.
    19. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    20. Zhou, Liqun & Wang, Yiping & Huang, Qunwu, 2019. "Parametric analysis on the performance of flat plate collector with transparent insulation material," Energy, Elsevier, vol. 174(C), pages 534-542.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:875-885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.