IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v27y2002i4p489-505.html
   My bibliography  Save this article

Model of a space heating system integrating a heat pump, photothermal collectors and solar cells

Author

Listed:
  • Badescu, Viorel

Abstract

Details about modelling the heating system of an ecological building are given in this paper. Solar air heaters provide thermal energy for various needs and for driving a vapor compression heat pump for space heating. The heating system has two different operating modes. In the first mode the heat pump operates in combination with the solar thermal collectors array. In the second mode the building is heated by the heat pump alone. Switching between the two operating modes mainly depends on the level of incident solar global irradiance but other control parameters are also taken into account. The heat pump COP is higher in the first operating mode. Also, the electric power required by the heat pump's compressor is smaller (with up to 8%) in the first operating mode.

Suggested Citation

  • Badescu, Viorel, 2002. "Model of a space heating system integrating a heat pump, photothermal collectors and solar cells," Renewable Energy, Elsevier, vol. 27(4), pages 489-505.
  • Handle: RePEc:eee:renene:v:27:y:2002:i:4:p:489-505
    DOI: 10.1016/S0960-1481(01)00191-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148101001914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(01)00191-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torres R, E & Picon Nuñez, M & Cervantes de G, J, 1998. "Exergy analysis and optimization of a solar-assisted heat pump," Energy, Elsevier, vol. 23(4), pages 337-344.
    2. Smith, R.R. & Hwang, C.C. & Dougall, R.S., 1994. "Modeling of a solar-assisted desiccant air conditioner for a residential building," Energy, Elsevier, vol. 19(6), pages 679-691.
    3. Kaygusuz, K. & Ayhan, T., 1993. "Exergy analysis of solar-assisted heat-pump systems for domestic heating," Energy, Elsevier, vol. 18(10), pages 1077-1085.
    4. Badescu, V, 1998. "Model For A Solar-Assisted Climatization System," Energy, Elsevier, vol. 23(9), pages 753-766.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Seung Joo & Shon, Byung Hoon & Jung, Chung Woo & Kang, Yong Tae, 2018. "A novel type solar assisted heat pump using a low GWP refrigerant (R-1233zd(E)) with the flexible solar collector," Energy, Elsevier, vol. 149(C), pages 386-396.
    2. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    3. Liu, Yin & Ma, Jing & Zhou, Guanghui & Zhang, Chao & Wan, Wenlei, 2016. "Performance of a solar air composite heat source heat pump system," Renewable Energy, Elsevier, vol. 87(P3), pages 1053-1058.
    4. Girard, Aymeric & Gago, Eulalia Jadraque & Muneer, Tariq & Caceres, Gustavo, 2015. "Higher ground source heat pump COP in a residential building through the use of solar thermal collectors," Renewable Energy, Elsevier, vol. 80(C), pages 26-39.
    5. Zhiyong Yang & Yiping Wang & Li Zhu, 2011. "Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors," Energies, MDPI, vol. 4(3), pages 1-13, March.
    6. Ji, Jie & Liu, Keliang & Chow, Tin-tai & Pei, Gang & He, Wei & He, Hanfeng, 2008. "Performance analysis of a photovoltaic heat pump," Applied Energy, Elsevier, vol. 85(8), pages 680-693, August.
    7. Naphon, Paisarn, 2005. "On the performance and entropy generation of the double-pass solar air heater with longitudinal fins," Renewable Energy, Elsevier, vol. 30(9), pages 1345-1357.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyong Yang & Yiping Wang & Li Zhu, 2011. "Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors," Energies, MDPI, vol. 4(3), pages 1-13, March.
    2. Cho, Honghyun, 2015. "Comparative study on the performance and exergy efficiency of a solar hybrid heat pump using R22 and R744," Energy, Elsevier, vol. 93(P2), pages 1267-1276.
    3. Shamshirgaran, Seyed Reza & Khalaji Assadi, Morteza & Badescu, Viorel & Al-Kayiem, Hussain H., 2018. "Upper limits for the work extraction by nanofluid-filled selective flat-plate solar collectors," Energy, Elsevier, vol. 160(C), pages 875-885.
    4. Ahamed, J.U. & Saidur, R. & Masjuki, H.H., 2011. "A review on exergy analysis of vapor compression refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1593-1600, April.
    5. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    6. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2012. "Exergy based analysis of solar air heater having discrete V-down rib roughness on absorber plate," Energy, Elsevier, vol. 37(1), pages 749-758.
    7. Seyed Reza Shamshirgaran & Hussain H. Al-Kayiem & Korada V. Sharma & Mostafa Ghasemi, 2020. "State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment," Sustainability, MDPI, vol. 12(21), pages 1-52, November.
    8. Kara, Ozer & Ulgen, Koray & Hepbasli, Arif, 2008. "Exergetic assessment of direct-expansion solar-assisted heat pump systems: Review and modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1383-1401, June.
    9. Luminosu, I. & Fara, L., 2005. "Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation," Energy, Elsevier, vol. 30(5), pages 731-747.
    10. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    11. Sphaier, L.A. & Nóbrega, C.E.L., 2012. "Parametric analysis of components effectiveness on desiccant cooling system performance," Energy, Elsevier, vol. 38(1), pages 157-166.
    12. Badescu, Viorel, 2003. "Time dependent model of a complex PV water pumping system," Renewable Energy, Elsevier, vol. 28(4), pages 543-560.
    13. Panaras, G. & Mathioulakis, E. & Belessiotis, V., 2011. "Solid desiccant air-conditioning systems – Design parameters," Energy, Elsevier, vol. 36(5), pages 2399-2406.
    14. Qi, Zihao & Cai, Yingling & Cui, Yunxiang, 2024. "Study on optimization of winter operation characteristics of solar-ground source heat pump in Shanghai," Renewable Energy, Elsevier, vol. 220(C).
    15. Ural, Tolga, 2019. "Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses," Energy, Elsevier, vol. 188(C).
    16. Al-Ameen, Yasameen & Ianakiev, Anton & Evans, Robert, 2017. "Thermal performance of a solar assisted horizontal ground heat exchanger," Energy, Elsevier, vol. 140(P1), pages 1216-1227.
    17. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    18. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Jegadheeswaran, S. & Pohekar, S.D. & Kousksou, T., 2010. "Exergy based performance evaluation of latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2580-2595, December.
    20. Badescu, Viorel, 2003. "Dynamic model of a complex system including PV cells, electric battery, electrical motor and water pump," Energy, Elsevier, vol. 28(12), pages 1165-1181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:27:y:2002:i:4:p:489-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.