IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp1144-1157.html
   My bibliography  Save this article

Experimental investigation of modified single slope solar still integrated with earth (I) &(II):Energy and exergy analysis

Author

Listed:
  • Dumka, Pankaj
  • Mishra, Dhananjay R.

Abstract

In this article, an attempt has been made to examine the experimental and theoretical results of two newly developed Modified single slope solar stills integrated with earth (MSSIE) viz. MSSIE(I) and MSSIE(II), using Dunkle, Kumar & Tiwari, Clark, modified Spalding's mass transfer theory and Tsilingiris models. In MSSIE(II) the polythene covering has substantially elevated the energy of nearby ground which results in 11.2% higher distillate yield than MSSIE(I). Kumar & Tiwari model gives good agreement with the results obtained from the experimentation. It has deviation of 3.53 and 4.03% for MSSIE(I) and MSSIE(II) respectively. Total internal and exergy efficiency (Kumar & Tiwari model) of MSSIE(II) leads by 5.06 and 76.64% as compared to MSSIE(I) respectively. Maximum exergy destruction has been recorded in the basin area. MSSIE(II) shows a reduction of 2.96% in exergy destruction as comparison to MSSIE(I). From experimental and theoretical results it has been observed that, the proposed model (MSSIE(II)) maintain its lead throughout the experimentation and hence can be a good option for potable water production in coastal areas.

Suggested Citation

  • Dumka, Pankaj & Mishra, Dhananjay R., 2018. "Experimental investigation of modified single slope solar still integrated with earth (I) &(II):Energy and exergy analysis," Energy, Elsevier, vol. 160(C), pages 1144-1157.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:1144-1157
    DOI: 10.1016/j.energy.2018.07.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218313781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karimi Estahbanati, M.R. & Feilizadeh, Mehrzad & Jafarpur, Khosrow & Feilizadeh, Mansoor & Rahimpour, Mohammad Reza, 2015. "Experimental investigation of a multi-effect active solar still: The effect of the number of stages," Applied Energy, Elsevier, vol. 137(C), pages 46-55.
    2. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    3. Kiatsiriroat, T. & Bhattacharya, S.C. & Wibulswas, P., 1986. "Prediction of mass transfer rates in solar stills," Energy, Elsevier, vol. 11(9), pages 881-886.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dumka, Pankaj & Mishra, Dhananjay R., 2020. "Performance evaluation of single slope solar still augmented with the ultrasonic fogger," Energy, Elsevier, vol. 190(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    2. Ioana C. Giurgiu & Joerg Baumeister & Paul Burton, 2023. "Urban-Wetland Equitable Planning Tool," Sustainability, MDPI, vol. 15(21), pages 1-54, November.
    3. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    4. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
    5. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    6. Toghyani, Mahboubeh & Rahimi, Amir, 2015. "Exergy analysis of an industrial unit of catalyst regeneration based on the results of modeling and simulation," Energy, Elsevier, vol. 91(C), pages 1049-1056.
    7. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    8. Shangyuan Chen & Jinfeng Mao & Xu Han & Chaofeng Li & Liyao Liu, 2016. "Numerical Analysis of the Factors Influencing a Vertical U-Tube Ground Heat Exchanger," Sustainability, MDPI, vol. 8(9), pages 1-12, September.
    9. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "Exergetic and exergoeconomic aspects of wind energy systems in achieving sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2810-2825, August.
    10. Panomwan Na Ayuthaya, Rattanapol & Namprakai, Pichai & Ampun, Wirut, 2013. "The thermal performance of an ethanol solar still with fin plate to increase productivity," Renewable Energy, Elsevier, vol. 54(C), pages 227-234.
    11. Ooshaksaraei, Poorya & Sopian, Kamaruzzaman & Zaidi, Saleem H. & Zulkifli, Rozli, 2017. "Performance of four air-based photovoltaic thermal collectors configurations with bifacial solar cells," Renewable Energy, Elsevier, vol. 102(PB), pages 279-293.
    12. Borunda, Mónica & Jaramillo, O.A. & Dorantes, R. & Reyes, Alberto, 2016. "Organic Rankine Cycle coupling with a Parabolic Trough Solar Power Plant for cogeneration and industrial processes," Renewable Energy, Elsevier, vol. 86(C), pages 651-663.
    13. Wetser, Koen & Sudirjo, Emilius & Buisman, Cees J.N. & Strik, David P.B.T.B., 2015. "Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode," Applied Energy, Elsevier, vol. 137(C), pages 151-157.
    14. Büyüközkan, Gülçin & Güleryüz, Sezin, 2016. "An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey," International Journal of Production Economics, Elsevier, vol. 182(C), pages 435-448.
    15. BoroumandJazi, G. & Saidur, R. & Rismanchi, B. & Mekhilef, S., 2012. "A review on the relation between the energy and exergy efficiency analysis and the technical characteristic of the renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3131-3135.
    16. Retkowski, Waldemar & Thöming, Jorg, 2014. "Thermoeconomic optimization of vertical ground-source heat pump systems through nonlinear integer programming," Applied Energy, Elsevier, vol. 114(C), pages 492-503.
    17. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    18. Kandilli, Canan & Koclu, Aytac, 2011. "Assessment of the optimum operation conditions of a plate heat exchanger for waste heat recovery in textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4424-4431.
    19. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    20. Jaramillo, O.A. & Venegas-Reyes, E. & Aguilar, J.O. & Castrejón-García, R. & Sosa-Montemayor, F., 2013. "Parabolic trough concentrators for low enthalpy processes," Renewable Energy, Elsevier, vol. 60(C), pages 529-539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:1144-1157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.