IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v159y2018icp648-655.html
   My bibliography  Save this article

Carbon-based sorbents impregnated with iron oxides for removing mercury in energy generation processes

Author

Listed:
  • Trobajo, J.R.
  • Antuña-Nieto, C.
  • Rodríguez, E.
  • García, R.
  • López-Antón, M.A.
  • Martínez-Tarazona, M.R.

Abstract

Gaseous phase mercury emissions into the atmosphere from fossil fuel combustion processes for energy production are a matter of serious environmental concern. Several technologies have been studied and proposed to address this problem, but none of them is mature enough from a commercial point of view. This study aims to provide new insights into the interaction between mercury and iron oxides in order to enable the design of cost-effective mercury capture technology based on regenerable sorbents. Different iron oxides supported on an activated carbon were prepared and tested for the removal of elemental mercury (Hg0). It was found that 1) maghemite promoted the removal of mercury to a greater extent than goetite/hematite achieving 100% efficiencies and 2) the mercury-sorbent interaction is determined by the oxygen vacancies present in the iron oxide. The mercury retention efficiency is maintained after the sorbent is regenerated and it is not deactivated by the presence of acid gases. The results obtained with the sorbent loaded with maghemite open new perspectives for the retention of gaseous Hg0, combining high efficiency, good regenerability and lower price in comparison with sorbents developed to date. Once the regeneration capacity is assessed, the adsorption process will be scaled.

Suggested Citation

  • Trobajo, J.R. & Antuña-Nieto, C. & Rodríguez, E. & García, R. & López-Antón, M.A. & Martínez-Tarazona, M.R., 2018. "Carbon-based sorbents impregnated with iron oxides for removing mercury in energy generation processes," Energy, Elsevier, vol. 159(C), pages 648-655.
  • Handle: RePEc:eee:energy:v:159:y:2018:i:c:p:648-655
    DOI: 10.1016/j.energy.2018.06.189
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218312544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McGlade, Christophe & Speirs, Jamie & Sorrell, Steve, 2013. "Unconventional gas – A review of regional and global resource estimates," Energy, Elsevier, vol. 55(C), pages 571-584.
    2. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2017. "Emergy analysis of three alternative carbon dioxide capture processes," Energy, Elsevier, vol. 128(C), pages 101-108.
    3. Nuria Fernández-Miranda & Elena Rodríguez & Maria Antonia Lopez-Anton & Roberto García & Maria Rosa Martínez-Tarazona, 2017. "A New Approach for Retaining Mercury in Energy Generation Processes: Regenerable Carbonaceous Sorbents," Energies, MDPI, vol. 10(9), pages 1-11, September.
    4. Hnydiuk-Stefan, Anna & Składzień, Jan, 2017. "Analysis of supercritical coal fired oxy combustion power plant with cryogenic oxygen unit and turbo-compressor," Energy, Elsevier, vol. 128(C), pages 271-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izabella Maj & Krzysztof Matus, 2023. "Aluminosilicate Clay Minerals: Kaolin, Bentonite, and Halloysite as Fuel Additives for Thermal Conversion of Biomass and Waste," Energies, MDPI, vol. 16(11), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antuña-Nieto, C. & Rodríguez, E. & Lopez-Anton, M.A. & García, R. & Martínez-Tarazona, M.R., 2018. "A candidate material for mercury control in energy production processes: Carbon foams loaded with gold," Energy, Elsevier, vol. 159(C), pages 630-637.
    2. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    3. Zhang, Rui & Yang, Qi & Yu, Bing & Yu, Hai & Liang, Zhiwu, 2018. "Toward to efficient CO2 capture solvent design by analyzing the effect of substituent type connected to N-atom," Energy, Elsevier, vol. 144(C), pages 1064-1072.
    4. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    5. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    6. Wawrzyńczak, Dariusz & Panowski, Marcin & Majchrzak-Kucęba, Izabela, 2019. "Possibilities of CO2 purification coming from oxy-combustion for enhanced oil recovery and storage purposes by adsorption method on activated carbon," Energy, Elsevier, vol. 180(C), pages 787-796.
    7. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2023. "Optimizing utilization pathways for biomass to chemicals and energy by integrating emergy analysis and particle swarm optimization (PSO)," Renewable Energy, Elsevier, vol. 202(C), pages 1448-1459.
    8. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
    10. Tao Li & Yimiao Song & Jing Shen, 2019. "Clean Power Dispatching of Coal-Fired Power Generation in China Based on the Production Cleanliness Evaluation Method," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
    11. Ikonnikova, Svetlana & Gülen, Gürcan & Browning, John & Tinker, Scott W., 2015. "Profitability of shale gas drilling: A case study of the Fayetteville shale play," Energy, Elsevier, vol. 81(C), pages 382-393.
    12. Xiang, Qing & Pan, Hengyu & Ma, Xiaohan & Yang, Mingdong & Lyu, Yanfeng & Zhang, Xiaohong & Shui, Wei & Liao, Wenjie & Xiao, Yinlong & Wu, Jun & Zhang, Yanzong & Xu, Min, 2024. "Impacts of energy-saving and emission-reduction on sustainability of cement production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    13. Watson, Jim & Gross, Rob & Ketsopoulou, Ioanna & Winskel, Mark, 2015. "The impact of uncertainties on the UK's medium-term climate change targets," Energy Policy, Elsevier, vol. 87(C), pages 685-695.
    14. Gülen, Gürcan & Browning, John & Ikonnikova, Svetlana & Tinker, Scott W., 2013. "Well economics across ten tiers in low and high Btu (British thermal unit) areas, Barnett Shale, Texas," Energy, Elsevier, vol. 60(C), pages 302-315.
    15. Wang, Jianliang & Mohr, Steve & Feng, Lianyong & Liu, Huihui & Tverberg, Gail E., 2016. "Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth," Energy Policy, Elsevier, vol. 88(C), pages 389-401.
    16. Zou, Youqin & Yang, Changbing & Wu, Daishe & Yan, Chun & Zeng, Masun & Lan, Yingying & Dai, Zhenxue, 2016. "Probabilistic assessment of shale gas production and water demand at Xiuwu Basin in China," Applied Energy, Elsevier, vol. 180(C), pages 185-195.
    17. Guo, Hongguang & Zhang, Yujie & Zhang, Yiwen & Li, Xingfeng & Li, Zhigang & Liang, Weiguo & Huang, Zaixing & Urynowicz, Michael & Ali, Muhammad Ishtiaq, 2021. "Feasibility study of enhanced biogenic coalbed methane production by super-critical CO2 extraction," Energy, Elsevier, vol. 214(C).
    18. Qiang Lyu & Chang’an Wang & Xuan Liu & Defu Che, 2022. "Numerical Study on the Homogeneous Reactions of Mercury in a 600 MW Coal-Fired Utility Boiler," Energies, MDPI, vol. 15(2), pages 1-16, January.
    19. Speirs, Jamie & McGlade, Christophe & Slade, Raphael, 2015. "Uncertainty in the availability of natural resources: Fossil fuels, critical metals and biomass," Energy Policy, Elsevier, vol. 87(C), pages 654-664.
    20. Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:159:y:2018:i:c:p:648-655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.