IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v157y2018icp830-842.html
   My bibliography  Save this article

Energy integration of CO2 networks and power to gas for emerging energy autonomous cities in Europe

Author

Listed:
  • Suciu, Raluca
  • Girardin, Luc
  • Maréchal, François

Abstract

The concept of urban CO2 networks has been developed to deploy heat pump based district heating and cooling systems in dense urban areas. The use of the CO2 phase change reduces the cost of the heat distribution while allowing to recover waste heat that is typically rejected to the environment. The use of heat pumps to harvest heat from the environment and to supply heat to buildings allows one to propose district systems with COP as high as 6. Heat pumps can use the electricity produced by photovoltaics already providing up to 60% of the total consumption. This paper studies the integration of fuel cell based power to gas for the seasonal storage of the excess electricity produced in the summer by PV panels. The methane stored in liquid form is used in the winter to balance the electrical needs by fuel cell based co-generation, making therefore the city 100% supplied by renewable energy. The present work evaluates the integration of CO2 district energy network including power to gas systems on a compact urban block considering heating, cooling, electricity, e-mobility and waste management for different European climatic zones. In order to reach fully autonomous blocks using solar PV and municipal and industrial waste heat, a PV area of 10–35 m2/cap would be needed. The rooftop area available appears to be sufficient in areas like Southern Europe, while more area or alternative renewable sources such as wind or hydro are needed for other climatic zones. Regarding the economic feasibility of the system, the results show that an investment of 900–1300 €/cap would be needed, with a payback time between 11 and 14 years, depending on the different climate zones in Europe.

Suggested Citation

  • Suciu, Raluca & Girardin, Luc & Maréchal, François, 2018. "Energy integration of CO2 networks and power to gas for emerging energy autonomous cities in Europe," Energy, Elsevier, vol. 157(C), pages 830-842.
  • Handle: RePEc:eee:energy:v:157:y:2018:i:c:p:830-842
    DOI: 10.1016/j.energy.2018.05.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218309034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henchoz, Samuel & Weber, Céline & Maréchal, François & Favrat, Daniel, 2015. "Performance and profitability perspectives of a CO2 based district energy network in Geneva's City Centre," Energy, Elsevier, vol. 85(C), pages 221-235.
    2. Girardin, Luc & Marechal, François & Dubuis, Matthias & Calame-Darbellay, Nicole & Favrat, Daniel, 2010. "EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban areas," Energy, Elsevier, vol. 35(2), pages 830-840.
    3. Rubio-Maya, Carlos & Uche-Marcuello, Javier & Martínez-Gracia, Amaya & Bayod-Rújula, Angel A., 2011. "Design optimization of a polygeneration plant fuelled by natural gas and renewable energy sources," Applied Energy, Elsevier, vol. 88(2), pages 449-457, February.
    4. Weber, Céline & Favrat, Daniel, 2010. "Conventional and advanced CO2 based district energy systems," Energy, Elsevier, vol. 35(12), pages 5070-5081.
    5. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    6. Al-musleh, Easa I. & Mallapragada, Dharik S. & Agrawal, Rakesh, 2014. "Continuous power supply from a baseload renewable power plant," Applied Energy, Elsevier, vol. 122(C), pages 83-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Modrzyński & Robert Karaszewski, 2022. "Urban Energy Management—A Systematic Literature Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    2. Ungar, Pietro & Schifflechner, Christopher & Wieland, Christoph & Spliethoff, Hartmut & Manfrida, Giampaolo, 2024. "Thermo-economic comparison of CO2 and water as a heat carrier for long-distance heat transport from geothermal sources: A Bavarian case study," Energy, Elsevier, vol. 298(C).
    3. Veselovskaya, Janna V. & Parunin, Pavel D. & Netskina, Olga V. & Kibis, Lidiya S. & Lysikov, Anton I. & Okunev, Aleksey G., 2018. "Catalytic methanation of carbon dioxide captured from ambient air," Energy, Elsevier, vol. 159(C), pages 766-773.
    4. Walker, Shalika & Katic, Katarina & Maassen, Wim & Zeiler, Wim, 2019. "Multi-criteria feasibility assessment of cost-optimized alternatives to comply with heating demand of existing office buildings – A case study," Energy, Elsevier, vol. 187(C).
    5. Raluca Suciu & Paul Stadler & Ivan Kantor & Luc Girardin & François Maréchal, 2019. "Systematic Integration of Energy-Optimal Buildings With District Networks," Energies, MDPI, vol. 12(15), pages 1-38, July.
    6. Ding, Xiaoyi & Sun, Wei & Harrison, Gareth P. & Lv, Xiaojing & Weng, Yiwu, 2020. "Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid," Energy, Elsevier, vol. 213(C).
    7. Granacher, Julia & Nguyen, Tuong-Van & Castro-Amoedo, Rafael & Maréchal, François, 2022. "Overcoming decision paralysis—A digital twin for decision making in energy system design," Applied Energy, Elsevier, vol. 306(PA).
    8. Kılkış, Şiir & Kılkış, Birol, 2019. "An urbanization algorithm for districts with minimized emissions based on urban planning and embodied energy towards net-zero exergy targets," Energy, Elsevier, vol. 179(C), pages 392-406.
    9. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    10. Hür Bütün & Ivan Kantor & François Maréchal, 2019. "Incorporating Location Aspects in Process Integration Methodology," Energies, MDPI, vol. 12(17), pages 1-45, August.
    11. Federica Leone & Ala Hasan & Francesco Reda & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2023. "Supporting Cities towards Carbon Neutral Transition through Territorial Acupuncture," Sustainability, MDPI, vol. 15(5), pages 1-31, February.
    12. Jeanmonod, Guillaume & Wang, Ligang & Diethelm, Stefan & Maréchal, François & Van herle, Jan, 2019. "Trade-off designs of power-to-methane systems via solid-oxide electrolyzer and the application to biogas upgrading," Applied Energy, Elsevier, vol. 247(C), pages 572-581.
    13. Li, Yanxue & Gao, Weijun & Ruan, Yingjun, 2019. "Potential and sensitivity analysis of long-term hydrogen production in resolving surplus RES generation—a case study in Japan," Energy, Elsevier, vol. 171(C), pages 1164-1172.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    2. Henchoz, Samuel & Chatelan, Patrick & Maréchal, François & Favrat, Daniel, 2016. "Key energy and technological aspects of three innovative concepts of district energy networks," Energy, Elsevier, vol. 117(P2), pages 465-477.
    3. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    4. Ungar, Pietro & Schifflechner, Christopher & Wieland, Christoph & Spliethoff, Hartmut & Manfrida, Giampaolo, 2024. "Thermo-economic comparison of CO2 and water as a heat carrier for long-distance heat transport from geothermal sources: A Bavarian case study," Energy, Elsevier, vol. 298(C).
    5. Raluca Suciu & Paul Stadler & Ivan Kantor & Luc Girardin & François Maréchal, 2019. "Systematic Integration of Energy-Optimal Buildings With District Networks," Energies, MDPI, vol. 12(15), pages 1-38, July.
    6. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
    7. Prasanna, Ashreeta & Dorer, Viktor & Vetterli, Nadège, 2017. "Optimisation of a district energy system with a low temperature network," Energy, Elsevier, vol. 137(C), pages 632-648.
    8. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
    9. Jalil-Vega, F. & Hawkes, A.D., 2018. "Spatially resolved model for studying decarbonisation pathways for heat supply and infrastructure trade-offs," Applied Energy, Elsevier, vol. 210(C), pages 1051-1072.
    10. Nagano, Takahiro & Kajita, Jungo & Yoshida, Akira & Amano, Yoshiharu, 2021. "Estimation of the utility value of unused heat sources for a CO2 network system in Tokyo," Energy, Elsevier, vol. 226(C).
    11. Kim, Ryunhee & Hong, Yejin & Choi, Youngwoong & Yoon, Sungmin, 2021. "System-level fouling detection of district heating substations using virtual-sensor-assisted building automation system," Energy, Elsevier, vol. 227(C).
    12. Dominković, D.F. & Bačeković, I. & Sveinbjörnsson, D. & Pedersen, A.S. & Krajačić, G., 2017. "On the way towards smart energy supply in cities: The impact of interconnecting geographically distributed district heating grids on the energy system," Energy, Elsevier, vol. 137(C), pages 941-960.
    13. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    14. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    15. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    16. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    17. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    18. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    19. Min-Hwi Kim & Dong-Won Lee & Deuk-Won Kim & Young-Sub An & Jae-Ho Yun, 2021. "Energy Performance Investigation of Bi-Directional Convergence Energy Prosumers for an Energy Sharing Community," Energies, MDPI, vol. 14(17), pages 1-17, September.
    20. Østergaard, Dorte Skaarup & Svendsen, Svend, 2018. "Experience from a practical test of low-temperature district heating for space heating in five Danish single-family houses from the 1930s," Energy, Elsevier, vol. 159(C), pages 569-578.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:157:y:2018:i:c:p:830-842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.