IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v157y2018icp460-471.html
   My bibliography  Save this article

Resource portfolio design considerations for materially-efficient planning of 100% renewable electricity systems

Author

Listed:
  • Tarroja, Brian
  • Shaffer, Brendan P.
  • Samuelsen, Scott

Abstract

Different configurations of a 100% renewable electricity system are possible, but not all are equally desirable in terms of the scale of material resources required to sustain them. This study compares different approaches for developing a 100% renewable electricity system on the basis of the material mass investment required to sustain their physical components. Electric grid modeling accounting for operational constraints is used to determine the scale of energy technology capacities required to achieve a 100% renewable electricity system using California as a representative example and translating those requirements to material mass requirements. Using a wind/solar/storage approach requires exponentially growing capacities of energy storage to meet operational needs and requires significant material mass investments. Material resource efficiency of the system is shown to be improved by maximizing the use of regional non-variable renewables to the extent possible within local capacity constraints. Alternatively, overbuilding the wind and solar capacity in excess of that needed to meet annual demand is also shown to improve material resource efficiency of the system. Overall, different approaches for meeting a 100% renewable electricity penetration are not equally desirable when material resource usage is considered. This should be taken into account in future energy system planning studies.

Suggested Citation

  • Tarroja, Brian & Shaffer, Brendan P. & Samuelsen, Scott, 2018. "Resource portfolio design considerations for materially-efficient planning of 100% renewable electricity systems," Energy, Elsevier, vol. 157(C), pages 460-471.
  • Handle: RePEc:eee:energy:v:157:y:2018:i:c:p:460-471
    DOI: 10.1016/j.energy.2018.05.184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218310284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    2. Tarroja, Brian & Shaffer, Brendan & Samuelsen, Scott, 2015. "The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies," Energy, Elsevier, vol. 87(C), pages 504-519.
    3. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    4. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 171(C), pages 501-522.
    5. Blakers, Andrew & Lu, Bin & Stocks, Matthew, 2017. "100% renewable electricity in Australia," Energy, Elsevier, vol. 133(C), pages 471-482.
    6. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Reprint of Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 184(C), pages 1529-1550.
    7. Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Zeyer, Timo & Schramm, Stefan & Greiner, Martin & Jacobson, Mark Z., 2014. "Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions," Energy, Elsevier, vol. 72(C), pages 443-458.
    8. Denholm, Paul & Brinkman, Greg & Mai, Trieu, 2018. "How low can you go? The importance of quantifying minimum generation levels for renewable integration," Energy Policy, Elsevier, vol. 115(C), pages 249-257.
    9. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
    10. Eichman, Joshua D. & Mueller, Fabian & Tarroja, Brian & Schell, Lori Smith & Samuelsen, Scott, 2013. "Exploration of the integration of renewable resources into California's electric system using the Holistic Grid Resource Integration and Deployment (HiGRID) tool," Energy, Elsevier, vol. 50(C), pages 353-363.
    11. Esteban, Miguel & Portugal-Pereira, Joana, 2014. "Post-disaster resilience of a 100% renewable energy system in Japan," Energy, Elsevier, vol. 68(C), pages 756-764.
    12. Tarroja, Brian & Zhang, Li & Wifvat, Van & Shaffer, Brendan & Samuelsen, Scott, 2016. "Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles," Energy, Elsevier, vol. 106(C), pages 673-690.
    13. Tarroja, Brian & AghaKouchak, Amir & Samuelsen, Scott, 2016. "Quantifying climate change impacts on hydropower generation and implications on electric grid greenhouse gas emissions and operation," Energy, Elsevier, vol. 111(C), pages 295-305.
    14. Papaefthymiou, G. & Dragoon, Ken, 2016. "Towards 100% renewable energy systems: Uncapping power system flexibility," Energy Policy, Elsevier, vol. 92(C), pages 69-82.
    15. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parlane, Sarah & Ryan, Lisa, 2020. "Optimal contracts for renewable electricity," Energy Economics, Elsevier, vol. 91(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Tarroja, Brian & Peer, Rebecca A.M. & Sanders, Kelly T. & Grubert, Emily, 2020. "How do non-carbon priorities affect zero-carbon electricity systems? A case study of freshwater consumption and cost for Senate Bill 100 compliance in California," Applied Energy, Elsevier, vol. 265(C).
    4. Tarroja, Brian & Hittinger, Eric, 2021. "The value of consumer acceptance of controlled electric vehicle charging in a decarbonizing grid: The case of California," Energy, Elsevier, vol. 229(C).
    5. Tian, Shan & He, Haoyang & Kendall, Alissa & Davis, Steven J. & Ogunseitan, Oladele A. & Schoenung, Julie M. & Samuelsen, Scott & Tarroja, Brian, 2021. "Environmental benefit-detriment thresholds for flow battery energy storage systems: A case study in California," Applied Energy, Elsevier, vol. 300(C).
    6. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    7. Keck, Felix & Lenzen, Manfred & Vassallo, Anthony & Li, Mengyu, 2019. "The impact of battery energy storage for renewable energy power grids in Australia," Energy, Elsevier, vol. 173(C), pages 647-657.
    8. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    3. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    4. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
    5. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    6. Tarroja, Brian & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott & Raghavan, Shuba V. & Wei, Max & Sun, Kaiyu & Hong, Tianzhen, 2018. "Translating climate change and heating system electrification impacts on building energy use to future greenhouse gas emissions and electric grid capacity requirements in California," Applied Energy, Elsevier, vol. 225(C), pages 522-534.
    7. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
    8. Badami, Marco & Fambri, Gabriele, 2019. "Optimising energy flows and synergies between energy networks," Energy, Elsevier, vol. 173(C), pages 400-412.
    9. Tarroja, Brian & Forrest, Kate & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott, 2019. "Implications of hydropower variability from climate change for a future, highly-renewable electric grid in California," Applied Energy, Elsevier, vol. 237(C), pages 353-366.
    10. Jacobson, Mark Z., 2021. "The cost of grid stability with 100 % clean, renewable energy for all purposes when countries are isolated versus interconnected," Renewable Energy, Elsevier, vol. 179(C), pages 1065-1075.
    11. Jacobson, Mark Z. & von Krauland, Anna-Katharina & Coughlin, Stephen J. & Palmer, Frances C. & Smith, Miles M., 2022. "Zero air pollution and zero carbon from all energy at low cost and without blackouts in variable weather throughout the U.S. with 100% wind-water-solar and storage," Renewable Energy, Elsevier, vol. 184(C), pages 430-442.
    12. Lu, Bin & Blakers, Andrew & Stocks, Matthew & Do, Thang Nam, 2021. "Low-cost, low-emission 100% renewable electricity in Southeast Asia supported by pumped hydro storage," Energy, Elsevier, vol. 236(C).
    13. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    14. Jacobson, Mark Z. & Delucchi, Mark A. & Cameron, Mary A. & Mathiesen, Brian V., 2018. "Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes," Renewable Energy, Elsevier, vol. 123(C), pages 236-248.
    15. Mark Z. Jacobson & Anna-Katharina von Krauland & Zachary F.M. Burton & Stephen J. Coughlin & Caitlin Jaeggli & Daniel Nelli & Alexander J. H. Nelson & Yanbo Shu & Miles Smith & Chor Tan & Connery D. W, 2020. "Transitioning All Energy in 74 Metropolitan Areas, Including 30 Megacities, to 100% Clean and Renewable Wind, Water, and Sunlight (WWS)," Energies, MDPI, vol. 13(18), pages 1-40, September.
    16. Tarroja, Brian & Hittinger, Eric, 2021. "The value of consumer acceptance of controlled electric vehicle charging in a decarbonizing grid: The case of California," Energy, Elsevier, vol. 229(C).
    17. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    18. Thellufsen, Jakob Zinck & Lund, Henrik, 2017. "Cross-border versus cross-sector interconnectivity in renewable energy systems," Energy, Elsevier, vol. 124(C), pages 492-501.
    19. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    20. Knuepfer, K. & Rogalski, N. & Knuepfer, A. & Esteban, M. & Shibayama, T., 2022. "A reliable energy system for Japan with merit order dispatch, high variable renewable share and no nuclear power," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:157:y:2018:i:c:p:460-471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.