IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v300y2021ics0306261921007613.html
   My bibliography  Save this article

Environmental benefit-detriment thresholds for flow battery energy storage systems: A case study in California

Author

Listed:
  • Tian, Shan
  • He, Haoyang
  • Kendall, Alissa
  • Davis, Steven J.
  • Ogunseitan, Oladele A.
  • Schoenung, Julie M.
  • Samuelsen, Scott
  • Tarroja, Brian

Abstract

Energy storage systems are critical for enabling the environmental benefits associated with capturing renewable energy to displace fossil fuel-based generation, yet producing these systems also contributes to environmental impacts through their materials use and manufacturing. As energy storage capacity is scaled up to support increasingly renewable grids, the environmental benefits from their use may scale at different rates than the environmental impacts from their production. This implies the existence of capacity thresholds beyond which installing additional storage capacity may be environmentally detrimental. Identifying such thresholds are important for ensuring that energy storage capacity selection in future grids are consistent with net emissions reduction goals, but such thresholds have not been studied in the present literature. To identify such thresholds, here we combine electric grid dispatch modeling with life cycle analysis to compare how the emissions reductions from deploying three different flow battery energy storage types on a future California grid (>80% wind and solar) compare with emissions contributions from producing such batteries as total battery capacity installed on the grid increases. Depending on the type of battery and environmental impact indicator (greenhouse gas or particulate matter emissions), we find that the marginal environmental benefits of storage begin to diminish at deployed capacities of 38–76% of the mean daily renewable generation (256–512 GWh in our California scenarios) and reach zero at 105–284% of mean daily renewable generation (700–1810 GWh). Such storage capacities are conceivable, but upstream impacts of storage must be assessed in evaluating the environmental benefits of large-scale storage deployment, or they could negate the environmental benefits of regional electricity system decarbonization.

Suggested Citation

  • Tian, Shan & He, Haoyang & Kendall, Alissa & Davis, Steven J. & Ogunseitan, Oladele A. & Schoenung, Julie M. & Samuelsen, Scott & Tarroja, Brian, 2021. "Environmental benefit-detriment thresholds for flow battery energy storage systems: A case study in California," Applied Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007613
    DOI: 10.1016/j.apenergy.2021.117354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921007613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chowdhury, Jahedul Islam & Balta-Ozkan, Nazmiye & Goglio, Pietro & Hu, Yukun & Varga, Liz & McCabe, Leah, 2020. "Techno-environmental analysis of battery storage for grid level energy services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Krakowski, Vincent & Assoumou, Edi & Mazauric, Vincent & Maïzi, Nadia, 2016. "Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis," Applied Energy, Elsevier, vol. 171(C), pages 501-522.
    3. Mileva, Ana & Johnston, Josiah & Nelson, James H. & Kammen, Daniel M., 2016. "Power system balancing for deep decarbonization of the electricity sector," Applied Energy, Elsevier, vol. 162(C), pages 1001-1009.
    4. Blakers, Andrew & Lu, Bin & Stocks, Matthew, 2017. "100% renewable electricity in Australia," Energy, Elsevier, vol. 133(C), pages 471-482.
    5. Tarroja, Brian & Shaffer, Brendan P. & Samuelsen, Scott, 2018. "Resource portfolio design considerations for materially-efficient planning of 100% renewable electricity systems," Energy, Elsevier, vol. 157(C), pages 460-471.
    6. Eichman, Joshua D. & Mueller, Fabian & Tarroja, Brian & Schell, Lori Smith & Samuelsen, Scott, 2013. "Exploration of the integration of renewable resources into California's electric system using the Holistic Grid Resource Integration and Deployment (HiGRID) tool," Energy, Elsevier, vol. 50(C), pages 353-363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammed Y. Worku, 2022. "Recent Advances in Energy Storage Systems for Renewable Source Grid Integration: A Comprehensive Review," Sustainability, MDPI, vol. 14(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarroja, Brian & Peer, Rebecca A.M. & Sanders, Kelly T. & Grubert, Emily, 2020. "How do non-carbon priorities affect zero-carbon electricity systems? A case study of freshwater consumption and cost for Senate Bill 100 compliance in California," Applied Energy, Elsevier, vol. 265(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    4. Tarroja, Brian & Shaffer, Brendan P. & Samuelsen, Scott, 2018. "Resource portfolio design considerations for materially-efficient planning of 100% renewable electricity systems," Energy, Elsevier, vol. 157(C), pages 460-471.
    5. Tarroja, Brian & Hittinger, Eric, 2021. "The value of consumer acceptance of controlled electric vehicle charging in a decarbonizing grid: The case of California," Energy, Elsevier, vol. 229(C).
    6. Tarroja, Brian & Chiang, Felicia & AghaKouchak, Amir & Samuelsen, Scott & Raghavan, Shuba V. & Wei, Max & Sun, Kaiyu & Hong, Tianzhen, 2018. "Translating climate change and heating system electrification impacts on building energy use to future greenhouse gas emissions and electric grid capacity requirements in California," Applied Energy, Elsevier, vol. 225(C), pages 522-534.
    7. Keck, Felix & Lenzen, Manfred & Vassallo, Anthony & Li, Mengyu, 2019. "The impact of battery energy storage for renewable energy power grids in Australia," Energy, Elsevier, vol. 173(C), pages 647-657.
    8. Wang, Sarah & Tarroja, Brian & Schell, Lori Smith & Samuelsen, Scott, 2021. "Determining cost-optimal approaches for managing excess renewable electricity in decarbonized electricity systems," Renewable Energy, Elsevier, vol. 178(C), pages 1187-1197.
    9. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    10. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    11. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    12. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    13. Verástegui, Felipe & Lorca, Álvaro & Negrete-Pincetic, Matias & Olivares, Daniel, 2020. "Firewood heat electrification impacts in the Chilean power system," Energy Policy, Elsevier, vol. 144(C).
    14. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    15. Shirizadeh, Behrang & Quirion, Philippe, 2021. "Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage?," Energy Economics, Elsevier, vol. 95(C).
    16. De Rosa, Luca & Castro, Rui, 2020. "Forecasting and assessment of the 2030 australian electricity mix paths towards energy transition," Energy, Elsevier, vol. 205(C).
    17. Paul J. Burke, 2023. "On the way out: Government revenues from fossil fuels in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(1), pages 1-17, January.
    18. Best, Rohan & Burke, Paul J., 2018. "Adoption of solar and wind energy: The roles of carbon pricing and aggregate policy support," Energy Policy, Elsevier, vol. 118(C), pages 404-417.
    19. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
    20. Mostafa Rezaei & Ali Mostafaeipour & Mojtaba Qolipour & Hamid-Reza Arabnia, 2018. "Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran," Energy & Environment, , vol. 29(3), pages 333-357, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.