IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v155y2018icp66-76.html
   My bibliography  Save this article

Alternative designs of evacuated receiver for parabolic trough collector

Author

Listed:
  • Patil, Ramchandra G.
  • Panse, Sudhir V.
  • Joshi, Jyeshtharaj B.
  • Dalvi, Vishwanath H.

Abstract

The paper discusses alternative designs of receivers for parabolic trough collectors with smaller rim angles. The Half Insulation Filled Receiver (HIFR) and Linear Cavity Receiver (LCR) designs have been studied and optimized for minimum heat loss. Different combinations of insulations and annulus gasses have been evaluated. From this study, the best combination of insulation material and annulus gas and its pressure has been obtained for geometry optimization of the receiver. Configuration of SCHOTT PTR 70 receiver has been considered as the base case for this study. Heat losses from the HIFR and LCR for the microtherm – air (at 0.1 atm pressure) combination are the least being 255 W/m and 246 W/m respectively. The radius ratio (RR = DG/DP) value of HIFR for this is 2.5 and insulation thickness for LCR receiver is 20 mm. HIFR and LCR show maximum optical efficiency at rim angle ψ = 45° whereas, for a conventional cylindrical receiver the same is true at rim angle ψ = 90°. Therefore, both the proposed receiver designs are expected to be suitable alternatives of evacuated receivers for parabolic trough collectors with smaller rim angle (around 45°).

Suggested Citation

  • Patil, Ramchandra G. & Panse, Sudhir V. & Joshi, Jyeshtharaj B. & Dalvi, Vishwanath H., 2018. "Alternative designs of evacuated receiver for parabolic trough collector," Energy, Elsevier, vol. 155(C), pages 66-76.
  • Handle: RePEc:eee:energy:v:155:y:2018:i:c:p:66-76
    DOI: 10.1016/j.energy.2018.05.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218308429
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris A., 2012. "A detailed thermal model of a parabolic trough collector receiver," Energy, Elsevier, vol. 48(1), pages 298-306.
    2. Liu, Jinmei & Lei, Dongqiang & Li, Qiang, 2016. "Vacuum lifetime and residual gas analysis of parabolic trough receiver," Renewable Energy, Elsevier, vol. 86(C), pages 949-954.
    3. Xu, Chang & Song, Zhe & Chen, Lea-der & Zhen, Yuan, 2011. "Numerical investigation on porous media heat transfer in a solar tower receiver," Renewable Energy, Elsevier, vol. 36(3), pages 1138-1144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balaji, K. & Ganesh Kumar, P. & Sakthivadivel, D. & Vigneswaran, V.S. & Iniyan, S., 2019. "Experimental investigation on flat plate solar collector using frictionally engaged thermal performance enhancer in the absorber tube," Renewable Energy, Elsevier, vol. 142(C), pages 62-72.
    2. Shinde, Tukaram U. & Dalvi, Vishwanath H. & Patil, Ramchandra G. & Mathpati, Channamallikarjun S. & Panse, Sudhir V. & Joshi, Jyeshtharaj B., 2022. "Thermal performance analysis of novel receiver for parabolic trough solar collector," Energy, Elsevier, vol. 254(PA).
    3. Korres, D.N. & Tzivanidis, C., 2019. "Numerical investigation and optimization of an experimentally analyzed solar CPC," Energy, Elsevier, vol. 172(C), pages 57-67.
    4. Yang, Honglun & Wang, Qiliang & Huang, Yihang & Feng, Junsheng & Ao, Xianze & Hu, Maobin & Pei, Gang, 2019. "Spectral optimization of solar selective absorbing coating for parabolic trough receiver," Energy, Elsevier, vol. 183(C), pages 639-650.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    2. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    3. Camelia Stanciu & Dorin Stanciu & Adina-Teodora Gheorghian, 2017. "Thermal Analysis of a Solar Powered Absorption Cooling System with Fully Mixed Thermal Storage at Startup," Energies, MDPI, vol. 10(1), pages 1-19, January.
    4. El Kouche, Amal & Ortegón Gallego, Francisco, 2022. "Modeling and numerical simulation of a parabolic trough collector using an HTF with temperature dependent physical properties," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 430-451.
    5. Lei, Dongqiang & Fu, Xuqiang & Ren, Yucong & Yao, Fangyuan & Wang, Zhifeng, 2019. "Temperature and thermal stress analysis of parabolic trough receivers," Renewable Energy, Elsevier, vol. 136(C), pages 403-413.
    6. Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
    7. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    8. Stanek, Bartosz & Węcel, Daniel & Bartela, Łukasz & Rulik, Sebastian, 2022. "Solar tracker error impact on linear absorbers efficiency in parabolic trough collector – Optical and thermodynamic study," Renewable Energy, Elsevier, vol. 196(C), pages 598-609.
    9. Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
    10. Liang, Hongbo & You, Shijun & Zhang, Huan, 2015. "Comparison of different heat transfer models for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 148(C), pages 105-114.
    11. Ghazouani, Mokhtar & Bouya, Mohsine & Benaissa, Mohammed, 2020. "Thermo-economic and exergy analysis and optimization of small PTC collectors for solar heat integration in industrial processes," Renewable Energy, Elsevier, vol. 152(C), pages 984-998.
    12. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    13. Singh, Manmeet & Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2021. "Design methodology of a parabolic trough collector field for maximum annual energy yield," Renewable Energy, Elsevier, vol. 177(C), pages 229-241.
    14. Singh, Rajinesh & Rowlands, Andrew S. & Miller, Sarah A., 2013. "Effects of relative volume-ratios on dynamic performance of a direct-heated supercritical carbon-dioxide closed Brayton cycle in a solar-thermal power plant," Energy, Elsevier, vol. 55(C), pages 1025-1032.
    15. Karimi, Reza & Gheinani, Touraj Tavakoli & Madadi Avargani, Vahid, 2018. "A detailed mathematical model for thermal performance analysis of a cylindrical cavity receiver in a solar parabolic dish collector system," Renewable Energy, Elsevier, vol. 125(C), pages 768-782.
    16. López-González, D. & Valverde, J.L. & Sánchez, P. & Sanchez-Silva, L., 2013. "Characterization of different heat transfer fluids and degradation study by using a pilot plant device operating at real conditions," Energy, Elsevier, vol. 54(C), pages 240-250.
    17. Nokhosteen, Arman & Sobhansarbandi, Sarvenaz, 2021. "Numerical modeling and experimental cross-validation of a solar thermal collector through an innovative hybrid CFD model," Renewable Energy, Elsevier, vol. 172(C), pages 918-928.
    18. Kasaeian, Alibakhsh & Barghamadi, Hossein & Pourfayaz, Fathollah, 2017. "Performance comparison between the geometry models of multi-channel absorbers in solar volumetric receivers," Renewable Energy, Elsevier, vol. 105(C), pages 1-12.
    19. Roldán, M.I. & Smirnova, O. & Fend, T. & Casas, J.L. & Zarza, E., 2014. "Thermal analysis and design of a volumetric solar absorber depending on the porosity," Renewable Energy, Elsevier, vol. 62(C), pages 116-128.
    20. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:155:y:2018:i:c:p:66-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.