IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v173y2019icp1130-1140.html
   My bibliography  Save this article

Process simulation of hydrogen rich gas production from producer gas using HTS catalysis

Author

Listed:
  • Patra, Tapas Kumar
  • Mukherjee, Sudeep
  • Sheth, Pratik N.

Abstract

In the present article, ASPEN Plus is used to develop a process model of the hydrogen-rich gas production through cleaning and catalytic conditioning of producer gas. The process includes producer gas cleaning using venturi scrubber and sand bed filter followed by compression of the gas to 0.6 MPa using compressor. The clean producer gas along with steam undergoes high temperature water gas shift reaction to produce hydrogen-rich gas. The power law kinetic model for commercial HTS catalysts reported in the literature is used in the model. Experimental results from our previous study and those reported in the literature are used to validate the developed model for the compositions of CO & H2 in the product gas. The validated model is further simulated to study the effects of parameters such as reactor temperature, catalyst bed length and steam to CO ratio on the product gas composition. The optimum operating conditions for maximizing CO conversion are found and reported. The maximum H2 composition and CO conversion predicted by the model are 27.029% 97.5479% respectively and the corresponding operating conditions are reactor; temperature of 350 °C, S/CO of 8 and GHSV 1000 h−1.

Suggested Citation

  • Patra, Tapas Kumar & Mukherjee, Sudeep & Sheth, Pratik N., 2019. "Process simulation of hydrogen rich gas production from producer gas using HTS catalysis," Energy, Elsevier, vol. 173(C), pages 1130-1140.
  • Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:1130-1140
    DOI: 10.1016/j.energy.2019.02.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219303354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    2. Patra, Tapas Kumar & Sheth, Pratik N., 2015. "Biomass gasification models for downdraft gasifier: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 583-593.
    3. Patra, Tapas Kumar & Nimisha, K.R. & Sheth, Pratik N., 2016. "A comprehensive dynamic model for downdraft gasifier using heat and mass transport coupled with reaction kinetics," Energy, Elsevier, vol. 116(P1), pages 1230-1242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharma, Prateek & Sheth, Pratik N. & Mohapatra, B.N., 2023. "Co-processing of petcoke and producer gas obtained from RDF gasification in a white cement plant: A techno-economic analysis," Energy, Elsevier, vol. 265(C).
    2. Wang, Yinglong & Li, Guoxuan & Liu, Zhiqiang & Cui, Peizhe & Zhu, Zhaoyou & Yang, Sheng, 2019. "Techno-economic analysis of biomass-to-hydrogen process in comparison with coal-to-hydrogen process," Energy, Elsevier, vol. 185(C), pages 1063-1075.
    3. Krystian Butlewski, 2022. "Concept for Biomass and Organic Waste Refinery Plants Based on the Locally Available Organic Materials in Rural Areas of Poland," Energies, MDPI, vol. 15(9), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    2. Yao, Xiwen & Zhao, Zhicheng & Li, Jishuo & Zhang, Bohan & Zhou, Haodong & Xu, Kaili, 2020. "Experimental investigation of physicochemical and slagging characteristics of inorganic constituents in ash residues from gasification of different herbaceous biomass," Energy, Elsevier, vol. 198(C).
    3. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Michela Costa & Maurizio La Villetta & Daniele Piazzullo & Domenico Cirillo, 2021. "A Phenomenological Model of a Downdraft Biomass Gasifier Flexible to the Feedstock Composition and the Reactor Design," Energies, MDPI, vol. 14(14), pages 1-29, July.
    5. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    6. Salem, Ahmed M. & Abd Elbar, Ayman Refat, 2023. "The feasibility and performance of using producer gas as a gasifying medium," Energy, Elsevier, vol. 283(C).
    7. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    8. Yepes Maya, Diego Mauricio & Silva Lora, Electo Eduardo & Andrade, Rubenildo Vieira & Ratner, Albert & Martínez Angel, Juan Daniel, 2021. "Biomass gasification using mixtures of air, saturated steam, and oxygen in a two-stage downdraft gasifier. Assessment using a CFD modeling approach," Renewable Energy, Elsevier, vol. 177(C), pages 1014-1030.
    9. Jan Najser & Petr Buryan & Sergej Skoblia & Jaroslav Frantik & Jan Kielar & Vaclav Peer, 2019. "Problems Related to Gasification of Biomass—Properties of Solid Pollutants in Raw Gas," Energies, MDPI, vol. 12(6), pages 1-14, March.
    10. Wang, Lijun & Du, Xiaocheng & Xu, Lingfeng & Sun, Jiajun, 2020. "Numerical simulation of biomass gasification process and distribution mode in two-stage entrained flow gasifier," Renewable Energy, Elsevier, vol. 162(C), pages 1065-1075.
    11. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
    12. Sérgio Ferreira & Eliseu Monteiro & Paulo Brito & Cândida Vilarinho, 2019. "A Holistic Review on Biomass Gasification Modified Equilibrium Models," Energies, MDPI, vol. 12(1), pages 1-31, January.
    13. Wan, Wei & Engvall, Klas & Yang, Weihong & Möller, Björn Fredriksson, 2018. "Experimental and modelling studies on condensation of inorganic species during cooling of product gas from pressurized biomass fluidized bed gasification," Energy, Elsevier, vol. 153(C), pages 35-44.
    14. Hao Lv & Hao Ding & Dequn Zhou & Peng Zhou, 2014. "A Site Selection Model for a Straw-Based Power Generation Plant with CO 2 Emissions," Sustainability, MDPI, vol. 6(10), pages 1-16, October.
    15. Sarafraz, M.M. & Jafarian, M. & Arjomandi, M. & Nathan, G.J., 2017. "Potential use of liquid metal oxides for chemical looping gasification: A thermodynamic assessment," Applied Energy, Elsevier, vol. 195(C), pages 702-712.
    16. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    17. Halina Pawlak-Kruczek & Mateusz Wnukowski & Lukasz Niedzwiecki & Michał Czerep & Mateusz Kowal & Krystian Krochmalny & Jacek Zgóra & Michał Ostrycharczyk & Marcin Baranowski & Wilhelm Jan Tic & Joanna, 2019. "Torrefaction as a Valorization Method Used Prior to the Gasification of Sewage Sludge," Energies, MDPI, vol. 12(1), pages 1-18, January.
    18. Smith, William R. & Tahir, Hamdah & Leal, Allan M.M., 2024. "Stoichiometric and non-stoichiometric methods for modeling gasification and other reaction equilibria: A review of their foundations and their interconvertibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    19. Vera Marcantonio & Luisa Di Paola & Marcello De Falco & Mauro Capocelli, 2023. "Modeling of Biomass Gasification: From Thermodynamics to Process Simulations," Energies, MDPI, vol. 16(20), pages 1-30, October.
    20. Paul Thomas & Nirmala Soren, 2020. "An overview of municipal solid waste-to-energy application in Indian scenario," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 575-592, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:173:y:2019:i:c:p:1130-1140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.