IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v139y2017icp350-365.html
   My bibliography  Save this article

A shade dispersion interconnection scheme for partially shaded modules in a solar PV array network

Author

Listed:
  • Satpathy, Priya Ranjan
  • Sharma, Renu
  • Jena, Sasmita

Abstract

Solar Photovoltaic (SPV) arrays are networks of many modules interconnected to provide required terminal voltage and current. In field conditions, large PV arrays deliver lower power than array rating. In this paper, sensitivity of modular interconnection schemes in variation of available power from PV array is investigated. The approach involves the development of a computer algorithm that is required to evolve the new connection scheme to maximize power under all shading conditions. Connection schemes corresponding to minimum power loss for several shadows which are synthetized and an innovative connection scheme is evolved. This connection scheme is considered as the optimal connection scheme. The emerged connection scheme is evaluated for a small SPV array of size 3 × 3 and a comparatively large SPV array of size 7 × 7 using a prototype field experiment for various possible shading patterns. The merit of its energy generation compared to earlier interconnection schemes is highlighted. It is found that the proposed connection scheme excels in performance and redundancy over the hitherto known best interconnection schemes. The scheme may be very conveniently applied to subarrays which in turn can be synthesized for larger SPV arrays.

Suggested Citation

  • Satpathy, Priya Ranjan & Sharma, Renu & Jena, Sasmita, 2017. "A shade dispersion interconnection scheme for partially shaded modules in a solar PV array network," Energy, Elsevier, vol. 139(C), pages 350-365.
  • Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:350-365
    DOI: 10.1016/j.energy.2017.07.161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217313452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Potnuru, Srinivasa Rao & Pattabiraman, Dinesh & Ganesan, Saravana Ilango & Chilakapati, Nagamani, 2015. "Positioning of PV panels for reduction in line losses and mismatch losses in PV array," Renewable Energy, Elsevier, vol. 78(C), pages 264-275.
    2. Deshkar, Shubhankar Niranjan & Dhale, Sumedh Bhaskar & Mukherjee, Jishnu Shekar & Babu, T. Sudhakar & Rajasekar, N., 2015. "Solar PV array reconfiguration under partial shading conditions for maximum power extraction using genetic algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 102-110.
    3. Mervyn A. King & Don Fullerton, 1984. "The United States," NBER Chapters, in: The Taxation of Income from Capital: A Comparative Study of the United States, the United Kingdom, Sweden, and Germany, pages 193-267, National Bureau of Economic Research, Inc.
    4. Wang, Yaw-Juen & Hsu, Po-Chun, 2011. "An investigation on partial shading of PV modules with different connection configurations of PV cells," Energy, Elsevier, vol. 36(5), pages 3069-3078.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sai Krishna, G. & Moger, Tukaram, 2019. "Improved SuDoKu reconfiguration technique for total-cross-tied PV array to enhance maximum power under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 333-348.
    2. Aljafari, Belqasem & Satpathy, Priya Ranjan & Thanikanti, Sudhakar Babu, 2022. "Partial shading mitigation in PV arrays through dragonfly algorithm based dynamic reconfiguration," Energy, Elsevier, vol. 257(C).
    3. Bouselham, Loubna & Rabhi, Abdelhamid & Hajji, Bekkay & Mellit, Adel, 2021. "Photovoltaic array reconfiguration method based on fuzzy logic and recursive least squares: An experimental validation," Energy, Elsevier, vol. 232(C).
    4. Satpathy, Priya Ranjan & Aljafari, Belqasem & Thanikanti, Sudhakar Babu & Sharma, Renu, 2023. "An efficient power extraction technique for improved performance and reliability of solar PV arrays during partial shading," Energy, Elsevier, vol. 282(C).
    5. Kamran Ali Khan Niazi & Yongheng Yang & Mashood Nasir & Dezso Sera, 2019. "Evaluation of Interconnection Configuration Schemes for PV Modules with Switched-Inductor Converters under Partial Shading Conditions," Energies, MDPI, vol. 12(14), pages 1-12, July.
    6. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    7. Krishna, G.Sai & Moger, Tukaram, 2019. "Enhancement of maximum power output through reconfiguration techniques under non-uniform irradiance conditions," Energy, Elsevier, vol. 187(C).
    8. Satpathy, Priya Ranjan & Jena, Sasmita & Sharma, Renu, 2018. "Power enhancement from partially shaded modules of solar PV arrays through various interconnections among modules," Energy, Elsevier, vol. 144(C), pages 839-850.
    9. Sangeetha, Thangavel & Li, I-Ting & Lan, Tzu-Hsuan & Wang, Chin-Tsan & Yan, Wei-Mon, 2021. "A fluid dynamics perspective on the flow dependent performance of honey comb microbial fuel cells," Energy, Elsevier, vol. 214(C).
    10. Satpathy, Priya Ranjan & Sharma, Renu & Dash, Sambit, 2019. "An efficient SD-PAR technique for maximum power generation from modules of partially shaded PV arrays," Energy, Elsevier, vol. 175(C), pages 182-194.
    11. Belqasem Aljafari & Rupendra Kumar Pachauri & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2023. "Innovative Methodologies for Higher Global MPP of Photovoltaic Arrays under PSCs: Experimental Validation," Sustainability, MDPI, vol. 15(15), pages 1-28, August.
    12. de Jesus dos Santos Rodrigues, Marinaldo & Torres, Pedro Ferreira & Barros Galhardo, Marcos André & Chase, Otavio Andre & Monteiro, Weslley Leão & de Arimatéia Alves Vieira Filho, José & Mares, Fabríc, 2021. "A new methodology for the assessing of power losses in partially shaded SPV arrays," Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, Anurag Singh & Mukherjee, V., 2021. "Conventional and advanced PV array configurations to extract maximum power under partial shading conditions: A review," Renewable Energy, Elsevier, vol. 178(C), pages 977-1005.
    2. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    3. Yadav, Anurag Singh & Mukherjee, V., 2022. "Comprehensive investigation of various bypass diode associations for killer-SuDoKu PV array under several shading conditions," Energy, Elsevier, vol. 239(PB).
    4. Dhimish, Mahmoud & Holmes, Violeta & Mehrdadi, Bruce & Dales, Mark & Chong, Benjamin & Zhang, Li, 2017. "Seven indicators variations for multiple PV array configurations under partial shading and faulty PV conditions," Renewable Energy, Elsevier, vol. 113(C), pages 438-460.
    5. Astitva Kumar & Mohammad Rizwan & Uma Nangia & Muhannad Alaraj, 2021. "Grey Wolf Optimizer-Based Array Reconfiguration to Enhance Power Production from Solar Photovoltaic Plants under Different Scenarios," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    6. Ko, Suk Whan & Ju, Young Chul & Hwang, Hye Mi & So, Jung Hun & Jung, Young-Seok & Song, Hyung-Jun & Song, Hee-eun & Kim, Soo-Hyun & Kang, Gi Hwan, 2017. "Electric and thermal characteristics of photovoltaic modules under partial shading and with a damaged bypass diode," Energy, Elsevier, vol. 128(C), pages 232-243.
    7. Zhang, Xiaoshun & Meng, Die & Cai, Jiahui & Zhang, Guiyuan & Yu, Tao & Pan, Feng & Yang, Yuyao, 2023. "A swarm based double Q-learning for optimal PV array reconfiguration with a coordinated control of hydrogen energy storage system," Energy, Elsevier, vol. 266(C).
    8. Belhaouas, N. & Cheikh, M.-S. Ait & Agathoklis, P. & Oularbi, M.-R. & Amrouche, B. & Sedraoui, K. & Djilali, N., 2017. "PV array power output maximization under partial shading using new shifted PV array arrangements," Applied Energy, Elsevier, vol. 187(C), pages 326-337.
    9. Mehedi, I.M. & Salam, Z. & Ramli, M.Z. & Chin, V.J. & Bassi, H. & Rawa, M.J.H. & Abdullah, M.P., 2021. "Critical evaluation and review of partial shading mitigation methods for grid-connected PV system using hardware solutions: The module-level and array-level approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    10. Bana, Sangram & Saini, R.P., 2017. "Experimental investigation on power output of different photovoltaic array configurations under uniform and partial shading scenarios," Energy, Elsevier, vol. 127(C), pages 438-453.
    11. Yadav, Vinod Kumar & Behera, Anwesh Devratna & Singh, Ranjeet & Maheshwari, Anubhav & Ghosh, Santosh & Prakash, Abhijeet, 2023. "A novel PV array reconfiguration technique based on circular array data structure," Energy, Elsevier, vol. 283(C).
    12. Giuseppe Schettino & Filippo Pellitteri & Guido Ala & Rosario Miceli & Pietro Romano & Fabio Viola, 2020. "Dynamic Reconfiguration Systems for PV Plant: Technical and Economic Analysis," Energies, MDPI, vol. 13(8), pages 1-21, April.
    13. Manoharan Premkumar & Umashankar Subramaniam & Thanikanti Sudhakar Babu & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns," Energies, MDPI, vol. 13(12), pages 1-37, June.
    14. Krishna, G.Sai & Moger, Tukaram, 2019. "Enhancement of maximum power output through reconfiguration techniques under non-uniform irradiance conditions," Energy, Elsevier, vol. 187(C).
    15. Sai Krishna, G. & Moger, Tukaram, 2019. "Improved SuDoKu reconfiguration technique for total-cross-tied PV array to enhance maximum power under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 333-348.
    16. Satpathy, Priya Ranjan & Sharma, Renu & Dash, Sambit, 2019. "An efficient SD-PAR technique for maximum power generation from modules of partially shaded PV arrays," Energy, Elsevier, vol. 175(C), pages 182-194.
    17. Persson, Torsten & Tabellini, Guido, 2002. "Political economics and public finance," Handbook of Public Economics, in: A. J. Auerbach & M. Feldstein (ed.), Handbook of Public Economics, edition 1, volume 3, chapter 24, pages 1549-1659, Elsevier.
    18. Daphne Chen & Shi Qi & Don Schlagenhauf, 2018. "Corporate Income Tax, Legal Form of Organization, and Employment," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(4), pages 270-304, October.
    19. John B. Burbidge & Kirk A. Collins & James B. Davies & Lonnie Magee, 2012. "Effective tax and subsidy rates on human capital in Canada," Canadian Journal of Economics, Canadian Economics Association, vol. 45(1), pages 189-219, February.
    20. Philip Bunn & Garry Young, 2004. "Corporate capital structure in the United Kingdom: determinants and adjustment," Bank of England working papers 226, Bank of England.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:139:y:2017:i:c:p:350-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.