IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp1479-1494.html
   My bibliography  Save this article

Thermal performance simulation analysis of solar field for parabolic trough collectors assigned for ambient conditions in Morocco

Author

Listed:
  • Zaaoumi, Anass
  • Asbik, Mohamed
  • Hafs, Hajar
  • Bah, Abdellah
  • Alaoui, Mohammed

Abstract

This paper aims to assess thermal performances of the solar field of the Integrated Solar Combined Cycle (ISCC) power plant at Aïn Beni Mathar (ABM) in Morocco for the year of 2015. Thus, mathematical modeling of the Schott PTR-70 2008 solar receiver consists of energy balance equations which were solved using COMSOL Multiphysics software. Next, the model was validated with empirical data from the literature, so the comparison is satisfactory. Results analyze daily and annual thermal performances of the plant, and also comparison between simulated and actual plant operating results. Indeed, for selected typical days, it was concluded that the model’s predictions seem to be adequate except at the beginning and end of each day. On the other hand, the estimates of cumulative thermal productions for selected ten days of each season were also carried out. Accordingly, the actual operating thermal energy is very close to simulated one for all chosen days since the relative error does not exceed 3.27% in the worse case. Unlike summer season (25.86 GWh in July), the monthly average thermal production is low in winter (about 6.0 GWh), as expected. In conclusion, the annual operating thermal production is about 172.5 GWh/year versus 176.3 GWh/year estimated value.

Suggested Citation

  • Zaaoumi, Anass & Asbik, Mohamed & Hafs, Hajar & Bah, Abdellah & Alaoui, Mohammed, 2021. "Thermal performance simulation analysis of solar field for parabolic trough collectors assigned for ambient conditions in Morocco," Renewable Energy, Elsevier, vol. 163(C), pages 1479-1494.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1479-1494
    DOI: 10.1016/j.renene.2020.08.151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120313963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouhal, T. & Agrouaz, Y. & Kousksou, T. & Allouhi, A. & El Rhafiki, T. & Jamil, A. & Bakkas, M., 2018. "Technical feasibility of a sustainable Concentrated Solar Power in Morocco through an energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1087-1095.
    2. Yassen, Tadahmun A. & Mokhlif, Nassir D. & Eleiwi, Muhammad Asmail, 2019. "Performance investigation of an integrated solar water heater with corrugated absorber surface for domestic use," Renewable Energy, Elsevier, vol. 138(C), pages 852-860.
    3. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Lecat, F. & Flamant, G., 2017. "A thermal model to predict the dynamic performances of parabolic trough lines," Energy, Elsevier, vol. 141(C), pages 1187-1203.
    4. Kalogirou, Soteris A., 2012. "A detailed thermal model of a parabolic trough collector receiver," Energy, Elsevier, vol. 48(1), pages 298-306.
    5. Valenzuela, Loreto & López-Martín, Rafael & Zarza, Eduardo, 2014. "Optical and thermal performance of large-size parabolic-trough solar collectors from outdoor experiments: A test method and a case study," Energy, Elsevier, vol. 70(C), pages 456-464.
    6. Manzolini, Giampaolo & Giostri, Andrea & Saccilotto, Claudio & Silva, Paolo & Macchi, Ennio, 2011. "Development of an innovative code for the design of thermodynamic solar power plants part A: Code description and test case," Renewable Energy, Elsevier, vol. 36(7), pages 1993-2003.
    7. Kalogirou, Soteris A., 2013. "Solar thermoelectric power generation in Cyprus: Selection of the best system," Renewable Energy, Elsevier, vol. 49(C), pages 278-281.
    8. Zaharil, H.A. & Hasanuzzaman, M., 2020. "Modelling and performance analysis of parabolic trough solar concentrator for different heat transfer fluids under Malaysian condition," Renewable Energy, Elsevier, vol. 149(C), pages 22-41.
    9. Alqahtani, Bandar Jubran & Patiño-Echeverri, Dalia, 2016. "Integrated Solar Combined Cycle Power Plants: Paving the way for thermal solar," Applied Energy, Elsevier, vol. 169(C), pages 927-936.
    10. Mwesigye, Aggrey & Yılmaz, İbrahim Halil & Meyer, Josua P., 2018. "Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-Therminol®VP-1 nanofluid," Renewable Energy, Elsevier, vol. 119(C), pages 844-862.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miroslaw Zukowski, 2020. "Determination of Heat Losses from the Pipeline in SDHW System during the Continuous Change of the Supply Temperature," Energies, MDPI, vol. 14(1), pages 1-21, December.
    2. Chater, Hamza & Asbik, Mohamed & Mouaky, Ammar & Koukouch, Abdelghani & Belandria, Veronica & Sarh, Brahim, 2023. "Experimental and CFD investigation of a helical coil heat exchanger coupled with a parabolic trough solar collector for heating a batch reactor: An exergy approach," Renewable Energy, Elsevier, vol. 202(C), pages 1507-1519.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    2. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    3. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.
    4. Kumaresan, G. & Sudhakar, P. & Santosh, R. & Velraj, R., 2017. "Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1363-1374.
    5. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Ghazouani, Mokhtar & Bouya, Mohsine & Benaissa, Mohammed, 2020. "Thermo-economic and exergy analysis and optimization of small PTC collectors for solar heat integration in industrial processes," Renewable Energy, Elsevier, vol. 152(C), pages 984-998.
    7. San Miguel, G. & Corona, B., 2018. "Economic viability of concentrated solar power under different regulatory frameworks in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 205-218.
    8. Fernández-García, Aránzazu & Valenzuela, Loreto & Zarza, Eduardo & Rojas, Esther & Pérez, Manuel & Hernández-Escobedo, Quetzalcoatl & Manzano-Agugliaro, Francisco, 2018. "SMALL-SIZED parabolic-trough solar collectors: Development of a test loop and evaluation of testing conditions," Energy, Elsevier, vol. 152(C), pages 401-415.
    9. Cheng, Z.D. & He, Y.L. & Cui, F.Q. & Du, B.C. & Zheng, Z.J. & Xu, Y., 2014. "Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model," Applied Energy, Elsevier, vol. 115(C), pages 559-572.
    10. Wang, Qiliang & Hu, Mingke & Yang, Honglun & Cao, Jingyu & Li, Jing & Su, Yuehong & Pei, Gang, 2019. "Energetic and exergetic analyses on structural optimized parabolic trough solar receivers in a concentrated solar–thermal collector system," Energy, Elsevier, vol. 171(C), pages 611-623.
    11. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    12. Qiu, Yu & Xu, Yucong & Li, Qing & Wang, Jikang & Wang, Qiliang & Liu, Bin, 2021. "Efficiency enhancement of a solar trough collector by combining solar and hot mirrors," Applied Energy, Elsevier, vol. 299(C).
    13. Peng, Hao & Guo, Wenhua & Li, Meilin, 2020. "Thermal-hydraulic and thermodynamic performances of liquid metal based nanofluid in parabolic trough solar receiver tube," Energy, Elsevier, vol. 192(C).
    14. Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Yin, Baoquan & Wu, Xiaoting, 2018. "Applicability analysis of the solar heating system with parabolic trough solar collectors in different regions of China," Applied Energy, Elsevier, vol. 221(C), pages 100-111.
    15. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    16. Salgado Conrado, L. & Rodriguez-Pulido, A. & Calderón, G., 2017. "Thermal performance of parabolic trough solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1345-1359.
    17. Camelia Stanciu & Dorin Stanciu & Adina-Teodora Gheorghian, 2017. "Thermal Analysis of a Solar Powered Absorption Cooling System with Fully Mixed Thermal Storage at Startup," Energies, MDPI, vol. 10(1), pages 1-19, January.
    18. Abdulrahman Joubi & Yutaro Akimoto & Keiichi Okajima, 2022. "A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates," Energies, MDPI, vol. 15(11), pages 1-14, May.
    19. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.
    20. El Kouche, Amal & Ortegón Gallego, Francisco, 2022. "Modeling and numerical simulation of a parabolic trough collector using an HTF with temperature dependent physical properties," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 430-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1479-1494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.