IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v139y2017icp76-88.html
   My bibliography  Save this article

Levelized electricity costing per carbon dioxide intensity of an organic Rankine cycle by using a water hyacinth-municipal solid waste fuel

Author

Listed:
  • Intaniwet, Akarin
  • Chaiyat, Nattaporn

Abstract

The potential of using a new type of water hyacinth and municipal solid waste at the ratio of 50:50 %wt as a heat source for a 20 kWe organic Rankine cycle has been determined in terms of energy, economic and environment aspects (3E model). From the testing results, it was found that the thermal performance of the ORC efficiency shows a linear correlation with the temperature different of heat source and heat sink at amplified by 8–9%. Levelized electricity costing from a water hyacinth-MSW-ORC (WMORC) system was determined to be 0.086 USD/kWh. The environmental impacts, 0.172 kg CO2-eq of greenhouse gas emission was estimated from the utilization of 1 kg of the new fuel. The LCA of the WMORC system was 0.6078 kg CO2-eq for the electrical energy generation of 1 kWh. In the 3E model assessment, a new parameter of levelized electricity costing per carbon dioxide intensity was defined and was found to be 0.052 USD·kg CO2-eq/kWh2, which was 20% lower compared to 0.065 USD·kg CO2-eq/kWh2 from the standard power plant in Thailand. Thus, this technique is an alternative sustainable solution to tackle the energy crisis, to limit waste as well as to reduce CO2 emission in Thailand.

Suggested Citation

  • Intaniwet, Akarin & Chaiyat, Nattaporn, 2017. "Levelized electricity costing per carbon dioxide intensity of an organic Rankine cycle by using a water hyacinth-municipal solid waste fuel," Energy, Elsevier, vol. 139(C), pages 76-88.
  • Handle: RePEc:eee:energy:v:139:y:2017:i:c:p:76-88
    DOI: 10.1016/j.energy.2017.07.135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421731318X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    2. Jradi, M. & Riffat, S., 2014. "Experimental investigation of a biomass-fuelled micro-scale tri-generation system with an organic Rankine cycle and liquid desiccant cooling unit," Energy, Elsevier, vol. 71(C), pages 80-93.
    3. Ouyang, Xiaoling & Lin, Boqiang, 2014. "Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China," Energy Policy, Elsevier, vol. 70(C), pages 64-73.
    4. Tańczuk, Mariusz & Ulbrich, Roman, 2013. "Implementation of a biomass-fired co-generation plant supplied with an ORC (Organic Rankine Cycle) as a heat source for small scale heat distribution system – A comparative analysis under Polish and G," Energy, Elsevier, vol. 62(C), pages 132-141.
    5. Uris, María & Linares, José Ignacio & Arenas, Eva, 2015. "Size optimization of a biomass-fired cogeneration plant CHP/CCHP (Combined heat and power/Combined heat, cooling and power) based on Organic Rankine Cycle for a district network in Spain," Energy, Elsevier, vol. 88(C), pages 935-945.
    6. Uris, María & Linares, José Ignacio & Arenas, Eva, 2014. "Techno-economic feasibility assessment of a biomass cogeneration plant based on an Organic Rankine Cycle," Renewable Energy, Elsevier, vol. 66(C), pages 707-713.
    7. Lin, Yi-Pin & Wang, Wen-Hsian & Pan, Shu-Yuan & Ho, Chang-Ching & Hou, Chin-Jen & Chiang, Pen-Chi, 2016. "Environmental impacts and benefits of organic Rankine cycle power generation technology and wood pellet fuel exemplified by electric arc furnace steel industry," Applied Energy, Elsevier, vol. 183(C), pages 369-379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo, C. & Almeida, R.H. & Martínez-Núñez, M. & Narvarte, L. & Carrasco, L.M., 2018. "Economic assessment of large power photovoltaic irrigation systems in the ECOWAS region," Energy, Elsevier, vol. 155(C), pages 992-1003.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanne Lemmens, 2016. "Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems," Energies, MDPI, vol. 9(7), pages 1-18, June.
    2. Świerzewski, Mateusz & Kalina, Jacek, 2020. "Optimisation of biomass-fired cogeneration plants using ORC technology," Renewable Energy, Elsevier, vol. 159(C), pages 195-214.
    3. Pezzuolo, Alex & Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2016. "The ORC-PD: A versatile tool for fluid selection and Organic Rankine Cycle unit design," Energy, Elsevier, vol. 102(C), pages 605-620.
    4. Alberto Benato & Alarico Macor, 2017. "Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle," Energies, MDPI, vol. 10(3), pages 1-18, March.
    5. Świerzewski, Mateusz & Kalina, Jacek & Musiał, Arkadiusz, 2021. "Techno-economic optimization of ORC system structure, size and working fluid within biomass-fired municipal cogeneration plant retrofitting project," Renewable Energy, Elsevier, vol. 180(C), pages 281-296.
    6. Li, Min & Zhao, Bingxiong, 2016. "Analytical thermal efficiency of medium-low temperature organic Rankine cycles derived from entropy-generation analysis," Energy, Elsevier, vol. 106(C), pages 121-130.
    7. Anna Stoppato & Alberto Benato, 2020. "Life Cycle Assessment of a Commercially Available Organic Rankine Cycle Unit Coupled with a Biomass Boiler," Energies, MDPI, vol. 13(7), pages 1-17, April.
    8. Kallis, George & Roumpedakis, Tryfon C. & Pallis, Platon & Koutantzi, Zoi & Charalampidis, Antonios & Karellas, Sotirios, 2022. "Life cycle analysis of a waste heat recovery for marine engines Organic Rankine Cycle," Energy, Elsevier, vol. 257(C).
    9. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    10. Babras Khan & Man-Hoe Kim, 2022. "Energy and Exergy Analyses of a Novel Combined Heat and Power System Operated by a Recuperative Organic Rankine Cycle Integrated with a Water Heating System," Energies, MDPI, vol. 15(18), pages 1-19, September.
    11. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    13. Gaoyuan Xu & Xiaojing Wang, 2022. "Research on the Electricity Market Clearing Model for Renewable Energy," Energies, MDPI, vol. 15(23), pages 1-16, December.
    14. Eva Segura & Rafael Morales & José A. Somolinos, 2017. "Cost Assessment Methodology and Economic Viability of Tidal Energy Projects," Energies, MDPI, vol. 10(11), pages 1-27, November.
    15. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    16. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    17. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Fuquan Zhao & Feiqi Liu & Han Hao & Zongwei Liu, 2020. "Carbon Emission Reduction Strategy for Energy Users in China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    19. Yi, Yuxin & Zhang, Liming & Du, Lei & Sun, Helin, 2024. "Cross-regional integration of renewable energy and corporate carbon emissions: Evidence from China's cross-regional surplus renewable energy spot trading pilot," Energy Economics, Elsevier, vol. 135(C).
    20. Kai Yang & Hongguang Zhang & Songsong Song & Jian Zhang & Yuting Wu & Yeqiang Zhang & Hongjin Wang & Ying Chang & Chen Bei, 2014. "Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander," Energies, MDPI, vol. 7(5), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:139:y:2017:i:c:p:76-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.