IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v126y2017icp208-216.html
   My bibliography  Save this article

NixCo1-x(OH)2 nanosheets on carbon nanofoam paper as high areal capacity electrodes for hybrid supercapacitors

Author

Listed:
  • Nguyen, Tuyen
  • Boudard, Michel
  • João Carmezim, M.
  • Fátima Montemor, M.

Abstract

This work reports the charge storage ability of NixCo1-x(OH)2 nanosheet-carbon nanofoam paper (CNFP) composites prepared by electrodeposition for high areal capacity supercapacitor electrodes. The NixCo1-x(OH)2 film grew through instantaneous nucleation, uniformly covered CNFP, and displayed a porous morphology composed of a nanosheet percolation network. The electrochemical response of the NixCo1-x(OH)2 films was tuned by varying the Co to Ni ratios. The optimized NixCo1-x(OH)2 stoichiometry resulted in Ni0.33Co0.67(OH)2-CNFP electrodes displaying areal capacity/capacitance values of 1.52 C cm−2/2.03 F cm−2 at 2.1 mA cm−2, resulting from the contribution of the double layer capacity of CNFP with the redox capacity of NixCo1-x(OH)2. A two electrode cell composed of CNFP as negative electrode and NixCo1-x(OH)2-CNFP as positive electrode presented a high areal capacity value of 0.73 C cm−2 at 7.2 mA cm−2.

Suggested Citation

  • Nguyen, Tuyen & Boudard, Michel & João Carmezim, M. & Fátima Montemor, M., 2017. "NixCo1-x(OH)2 nanosheets on carbon nanofoam paper as high areal capacity electrodes for hybrid supercapacitors," Energy, Elsevier, vol. 126(C), pages 208-216.
  • Handle: RePEc:eee:energy:v:126:y:2017:i:c:p:208-216
    DOI: 10.1016/j.energy.2017.03.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217303821
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, YanRu & Cheng, Baohai, 2016. "3D self-supported hierarchical NiCo architectures with integrated capacitive performance and enhanced electronic conductivity for supercapacitors," Energy, Elsevier, vol. 112(C), pages 755-761.
    2. Hong, Wei & Wang, Jinqing & Li, Zhangpeng & Yang, Shengrong, 2015. "Fabrication of Co3O4@Co–Ni sulfides core/shell nanowire arrays as binder-free electrode for electrochemical energy storage," Energy, Elsevier, vol. 93(P1), pages 435-441.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patil, Bebi & Ahn, Suhyun & Park, Changyong & Song, Hyeonjun & Jeong, Youngjin & Ahn, Heejoon, 2018. "Simple and novel strategy to fabricate ultra-thin, lightweight, stackable solid-state supercapacitors based on MnO2-incorporated CNT-web paper," Energy, Elsevier, vol. 142(C), pages 608-616.
    2. Lamiel, Charmaine & Nguyen, Van Hoa & Hussain, Iftikhar & Shim, Jae-Jin, 2017. "Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte," Energy, Elsevier, vol. 140(P1), pages 901-911.
    3. Mei, Junfeng & Fu, Wenbin & Zhang, Zemin & Jiang, Xiao & Bu, Han & Jiang, Changjun & Xie, Erqing & Han, Weihua, 2017. "Vertically-aligned Co3O4 nanowires interconnected with Co(OH)2 nanosheets as supercapacitor electrode," Energy, Elsevier, vol. 139(C), pages 1153-1158.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Le & Zhao, Yan & Lian, Jiabiao & Xu, Yuanguo & Bao, Jian & Qiu, Jingxia & Xu, Li & Xu, Hui & Hua, Mingqing & Li, Huaming, 2017. "Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density," Energy, Elsevier, vol. 123(C), pages 296-304.
    2. Zhang, Ziyun & Wang, Shilong & Chen, Xiaomin & Han, Sheng & Jiang, Jibo, 2024. "Built-in electric field and selenium vacancies synergistically enhance NiSe2@Co0.85Se high-performance supercapacitors," Energy, Elsevier, vol. 293(C).
    3. Mei, Junfeng & Fu, Wenbin & Zhang, Zemin & Jiang, Xiao & Bu, Han & Jiang, Changjun & Xie, Erqing & Han, Weihua, 2017. "Vertically-aligned Co3O4 nanowires interconnected with Co(OH)2 nanosheets as supercapacitor electrode," Energy, Elsevier, vol. 139(C), pages 1153-1158.
    4. Kim, Hong-Ki & Lee, Seung-Hwan, 2016. "Enhanced electrochemical performances of cylindrical hybrid supercapacitors using activated carbon/ Li4-xMxTi5-yNyO12 (M=Na, N=V, Mn) electrodes," Energy, Elsevier, vol. 109(C), pages 506-511.
    5. Iqbal, Muhammad Faisal & Ashiq, Muhammad Naeem & Hassan, Mahmood-Ul & Nawaz, Rahat & Masood, Aneeqa & Razaq, Aamir, 2018. "Excellent electrochemical behavior of graphene oxide based aluminum sulfide nanowalls for supercapacitor applications," Energy, Elsevier, vol. 159(C), pages 151-159.
    6. Lamiel, Charmaine & Nguyen, Van Hoa & Hussain, Iftikhar & Shim, Jae-Jin, 2017. "Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte," Energy, Elsevier, vol. 140(P1), pages 901-911.
    7. Ensafi, Ali A. & Ahmadi, Najmeh & Rezaei, Behzad & Abdolmaleki, Amir & Mahmoudian, Manzar, 2018. "A new quaternary nanohybrid composite electrode for a high-performance supercapacitor," Energy, Elsevier, vol. 164(C), pages 707-721.
    8. Zhang, Jijun & Chen, Zexiang & Wang, Yan & Li, Hai, 2016. "Morphology-controllable synthesis of 3D CoNiO2 nano-networks as a high-performance positive electrode material for supercapacitors," Energy, Elsevier, vol. 113(C), pages 943-948.
    9. Alami, Abdul Hai & Rajab, Bilal & Aokal, Kamilia, 2017. "Assessment of silver nanowires infused with zinc oxide as a transparent electrode for dye-sensitized solar cell applications," Energy, Elsevier, vol. 139(C), pages 1231-1236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:126:y:2017:i:c:p:208-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.