IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i10p1939-1948.html
   My bibliography  Save this article

Energy and exergy analyses of space heating in buildings

Author

Listed:
  • Yildiz, Abdullah
  • Güngör, Ali

Abstract

In the present study, energy and exergy analyses are presented for the whole process of space heating in buildings. This study is based on a pre-design analysis tool, which has been produced during ongoing work for the International Energy Agency (IEA) formed within the Energy Conservation in Buildings and Community Systems Programme (ECBCSP) Annex 37. Throughout this paper, in all of the calculations such as heat losses and gains were taken according to Turkish Standards Institution TSE, which is in accordance with the European Standard TS EN ISO 13789. In the analysis, heating load is taken account but cooling load is neglected and the calculations presented here are done using steady state conditions. The analysis is applied to an office in Izmir with a volume of 720 m3 and a net floor area of 240 m2 as an example of application. Indoor and exterior air temperatures are 20 °C and 0 °C, respectively. It is assumed that the office is heated by a liquid natural gas (LNG) fired conventional boiler, an LNG condensing boiler and an external air-air heat pump. With this study, energy and exergy flows are investigated. Energy and exergy losses in the whole system are quantified and illustrated. The highest efficiency values in terms of energy and exergy were found to be 80.9% for external air-air heat pump and 8.69% for LNG condensing boiler, respectively.

Suggested Citation

  • Yildiz, Abdullah & Güngör, Ali, 2009. "Energy and exergy analyses of space heating in buildings," Applied Energy, Elsevier, vol. 86(10), pages 1939-1948, October.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:10:p:1939-1948
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00331-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Liu & Lam, Joseph C. & Tsang, C.L., 2008. "Energy performance of building envelopes in different climate zones in China," Applied Energy, Elsevier, vol. 85(9), pages 800-817, September.
    2. Zmeureanu, Radu & Yu Wu, Xin, 2007. "Energy and exergy performance of residential heating systems with separate mechanical ventilation," Energy, Elsevier, vol. 32(3), pages 187-195.
    3. Chowdhury, Ashfaque Ahmed & Rasul, M.G. & Khan, M.M.K., 2008. "Thermal-comfort analysis and simulation for various low-energy cooling-technologies applied to an office building in a subtropical climate," Applied Energy, Elsevier, vol. 85(6), pages 449-462, June.
    4. Chandel, S.S. & Aggarwal, R.K., 2008. "Performance evaluation of a passive solar building in Western Himalayas," Renewable Energy, Elsevier, vol. 33(10), pages 2166-2173.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    2. Ouyang, F.Y. & Zheng, B. & Jiang, X.F., 2014. "Spatial and temporal structures of four financial markets in Greater China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 236-244.
    3. Mao, Ning & Hao, Jingyu & He, Tianbiao & Song, Mengjie & Xu, Yingjie & Deng, Shiming, 2019. "PMV-based dynamic optimization of energy consumption for a residential task/ambient air conditioning system in different climate zones," Renewable Energy, Elsevier, vol. 142(C), pages 41-54.
    4. Mohammed Awad Abuhussain & Nedhal Al-Tamimi & Badr S. Alotaibi & Manoj Kumar Singh & Sanjay Kumar & Rana Elnaklah, 2022. "Impact of Courtyard Concept on Energy Efficiency and Home Privacy in Saudi Arabia," Energies, MDPI, vol. 15(15), pages 1-18, August.
    5. Ascione, Fabrizio & Bianco, Nicola & de’ Rossi, Filippo & Turni, Gianluca & Vanoli, Giuseppe Peter, 2013. "Green roofs in European climates. Are effective solutions for the energy savings in air-conditioning?," Applied Energy, Elsevier, vol. 104(C), pages 845-859.
    6. Wang, Zhe & Hong, Tianzhen, 2020. "Learning occupants’ indoor comfort temperature through a Bayesian inference approach for office buildings in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Narayan, G. Prakash & McGovern, Ronan K. & Zubair, Syed M. & Lienhard, John H., 2012. "High-temperature-steam-driven, varied-pressure, humidification-dehumidification system coupled with reverse osmosis for energy-efficient seawater desalination," Energy, Elsevier, vol. 37(1), pages 482-493.
    8. Mourshed, Monjur, 2016. "Climatic parameters for building energy applications: A temporal-geospatial assessment of temperature indicators," Renewable Energy, Elsevier, vol. 94(C), pages 55-71.
    9. Ismail Abdul Rahman & Jouvan Chandra Pratama Putra & Ade Asmi, 2014. "Modelling of Particle Dispersion in Mechanically Ventilated Space," Modern Applied Science, Canadian Center of Science and Education, vol. 8(3), pages 1-60, June.
    10. Xi, Chen & Hongxing, Yang & Lin, Lu & Jinggang, Wang & Wei, Liu, 2011. "Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating," Energy, Elsevier, vol. 36(8), pages 5292-5300.
    11. Xu, Peng & Xu, Tengfang & Shen, Pengyuan, 2013. "Energy and behavioral impacts of integrative retrofits for residential buildings: What is at stake for building energy policy reforms in northern China?," Energy Policy, Elsevier, vol. 52(C), pages 667-676.
    12. Yan, Huaxia & Xia, Yudong & Deng, Shiming, 2017. "Simulation study on a three-evaporator air conditioning system for simultaneous indoor air temperature and humidity control," Applied Energy, Elsevier, vol. 207(C), pages 294-304.
    13. Iwaro, Joseph & Mwasha, Abrahams & Williams, Rupert G. & Zico, Ricardo, 2014. "An Integrated Criteria Weighting Framework for the sustainable performance assessment and design of building envelope," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 417-434.
    14. Yu, Jinghua & Yang, Changzhi & Tian, Liwei & Liao, Dan, 2009. "Evaluation on energy and thermal performance for residential envelopes in hot summer and cold winter zone of China," Applied Energy, Elsevier, vol. 86(10), pages 1970-1985, October.
    15. Ge, Gaoming & Xiao, Fu & Xu, Xinhua, 2011. "Model-based optimal control of a dedicated outdoor air-chilled ceiling system using liquid desiccant and membrane-based total heat recovery," Applied Energy, Elsevier, vol. 88(11), pages 4180-4190.
    16. Guo, Siyue & Yan, Da & Hong, Tianzhen & Xiao, Chan & Cui, Ying, 2019. "A novel approach for selecting typical hot-year (THY) weather data," Applied Energy, Elsevier, vol. 242(C), pages 1634-1648.
    17. Walsh, Angélica & Cóstola, Daniel & Labaki, Lucila Chebel, 2018. "Performance-based validation of climatic zoning for building energy efficiency applications," Applied Energy, Elsevier, vol. 212(C), pages 416-427.
    18. Gelegenis, John J., 2009. "A simplified quadratic expression for the approximate estimation of heating degree-days to any base temperature," Applied Energy, Elsevier, vol. 86(10), pages 1986-1994, October.
    19. Shukla, Akash Kumar & Sudhakar, K. & Baredar, Prashant & Mamat, Rizalman, 2018. "Solar PV and BIPV system: Barrier, challenges and policy recommendation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3314-3322.
    20. Wang, Huan & Chen, Wenying & Shi, Jingcheng, 2018. "Low carbon transition of global building sector under 2- and 1.5-degree targets," Applied Energy, Elsevier, vol. 222(C), pages 148-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:10:p:1939-1948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.