IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v136y2017icp7-15.html
   My bibliography  Save this article

A model calculation of the carbon footprint of agricultural products: The case of Slovenia

Author

Listed:
  • Al-Mansour, F.
  • Jejcic, V.

Abstract

The pursuit of sustainable development entails a strategic policy decision for all modern countries. Greenhouse gas abatement, the utilisation of renewable energy sources, and energy efficiency represent the main pillars of sustainable development. Agriculture contributes a significant share of greenhouse gas emissions and concurrently represents a carbon dioxide (CO2) sink; it thus has twofold opposing impacts on climate change. The carbon footprint of agricultural products is one of main measures for monitoring the efficiency and sustainability of agricultural productivity processes. A model calculation of the carbon footprint in the agricultural sector was developed in order to calculate the carbon footprint of grains, fruit, and other agriculture products based on a calculation of total greenhouse gas emissions resulting from production, from the beginning of the production process to storage and delivery to the final consumer or the food industry. The first obstacles in such a calculation are the availability of input data on energy consumption by unit of land for all forms of agricultural land preparation and other work required for sowing, fertilisation, plant protection, harvesting, internal transportation, and other work. The mineral diesel fuel consumption of tractors with various connected machines and self-propelled work machines (e.g. harvesters or forage harvesters for maize) were measured. In addition, the energy consumption required for harvesting and the internal transport of crops on farms itself was included. The results of the model calculation of the carbon footprint of agricultural products consider the type of farming production for three different sizes of farms and for two scenarios regarding soil tillage and seeding.

Suggested Citation

  • Al-Mansour, F. & Jejcic, V., 2017. "A model calculation of the carbon footprint of agricultural products: The case of Slovenia," Energy, Elsevier, vol. 136(C), pages 7-15.
  • Handle: RePEc:eee:energy:v:136:y:2017:i:c:p:7-15
    DOI: 10.1016/j.energy.2016.10.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216315444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.10.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. A. Montzka & E. J. Dlugokencky & J. H. Butler, 2011. "Non-CO2 greenhouse gases and climate change," Nature, Nature, vol. 476(7358), pages 43-50, August.
    2. Jankowski, Krzysztof Józef & Budzyński, Wojciech Stefan & Kijewski, Łukasz, 2015. "An analysis of energy efficiency in the production of oilseed crops of the family Brassicaceae in Poland," Energy, Elsevier, vol. 81(C), pages 674-681.
    3. Dassisti, Michele & Intini, Francesca & Chimienti, Michela & Starace, Giuseppe, 2016. "Thermography-enhanced LCA (Life Cycle Assessment) for manufacturing sustainability assessment. The case study of an HDPE (High Density Polyethylene) net company in Italy," Energy, Elsevier, vol. 108(C), pages 7-18.
    4. Soltani, Afshin & Rajabi, M.H. & Zeinali, E. & Soltani, Elias, 2013. "Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran," Energy, Elsevier, vol. 50(C), pages 54-61.
    5. Unakitan, G. & Hurma, H. & Yilmaz, F., 2010. "An analysis of energy use efficiency of canola production in Turkey," Energy, Elsevier, vol. 35(9), pages 3623-3627.
    6. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production," Energy, Elsevier, vol. 58(C), pages 588-593.
    7. Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
    8. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(S1), pages 23-32.
    9. Mileusnić, Z.I. & Petrović, D.V. & Đević, M.S., 2010. "Comparison of tillage systems according to fuel consumption," Energy, Elsevier, vol. 35(1), pages 221-228.
    10. Tabatabaeefar, A. & Emamzadeh, H. & Varnamkhasti, M. Ghasemi & Rahimizadeh, R. & Karimi, M., 2009. "Comparison of energy of tillage systems in wheat production," Energy, Elsevier, vol. 34(1), pages 41-45.
    11. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(Supplemen), pages 23-32, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Václav Voltr & Martin Hruška & Luboš Nobilis, 2021. "Complex Valuation of Energy from Agricultural Crops including Local Conditions," Energies, MDPI, vol. 14(5), pages 1-25, March.
    2. Iván García Kerdan & Sara Giarola & Ellis Skinner & Marin Tuleu & Adam Hawkes, 2020. "Modelling Future Agricultural Mechanisation of Major Crops in China: An Assessment of Energy Demand, Land Use and Emissions," Energies, MDPI, vol. 13(24), pages 1-31, December.
    3. Solinas, Stefania & Tiloca, Maria Teresa & Deligios, Paola A. & Cossu, Marco & Ledda, Luigi, 2021. "Carbon footprints and social carbon cost assessments in a perennial energy crop system: A comparison of fertilizer management practices in a Mediterranean area," Agricultural Systems, Elsevier, vol. 186(C).
    4. Long Liang & Bradley G. Ridoutt & Liyuan Wang, 2021. "Food Security and Climate Stabilization: Can Cereal Production Systems Address Both?," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    5. Devi Maulida Rahmah & Dwi Purnomo & Fitry Filianty & Irfan Ardiansah & Rahmat Pramulya & Ryozo Noguchi, 2023. "Social Life Cycle Assessment of a Coffee Production Management System in a Rural Area: A Regional Evaluation of the Coffee Industry in West Java, Indonesia," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    6. Feng Yang & Zhong Wu & Xiaoyan Teng & Shaojian Qu, 2022. "Robust Counterpart Models for Fresh Agricultural Product Routing Planning Considering Carbon Emissions and Uncertainty," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    7. Cong Zheng & Quangui Pang & Tianpei Li & Guizheng Wang & Yiji Cai & Lei Yang, 2019. "The Farmers’ Channel Selection and Sustainable Analysis under Carbon Tax Policy," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    8. Tatevik Yezekyan & Francesco Marinello & Giannantonio Armentano & Samuele Trestini & Luigi Sartori, 2018. "Definition of Reference Models for Power, Weight, Working Width, and Price for Seeding Machines," Agriculture, MDPI, vol. 8(12), pages 1-13, November.
    9. Jianguo Li & Wenhui Yang & Yi Wang & Qiang Li & Lili Liu & Zhongqi Zhang, 2018. "Carbon Footprint and Driving Forces of Saline Agriculture in Coastally Reclaimed Areas of Eastern China: A Survey of Four Staple Crops," Sustainability, MDPI, vol. 10(4), pages 1-16, March.
    10. Magdalena Wróbel-Jędrzejewska & Elżbieta Polak, 2023. "Carbon Footprint Analysis of Ice Cream Production," Sustainability, MDPI, vol. 15(8), pages 1-17, April.
    11. Devi Maulida Rahmah & Agusta Samodra Putra & Riaru Ishizaki & Ryozo Noguchi & Tofael Ahamed, 2022. "A Life Cycle Assessment of Organic and Chemical Fertilizers for Coffee Production to Evaluate Sustainability toward the Energy–Environment–Economic Nexus in Indonesia," Sustainability, MDPI, vol. 14(7), pages 1-28, March.
    12. Magdalena Wróbel-Jędrzejewska & Joanna Markowska & Agata Bieńczak & Paweł Woźniak & Łukasz Ignasiak & Elżbieta Polak & Katarzyna Kozłowicz & Renata Różyło, 2021. "Carbon Footprint in Vegeburger Production Technology Using a Prototype Forming and Breading Device," Sustainability, MDPI, vol. 13(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    2. Yuan, Shen & Peng, Shaobing & Wang, Dong & Man, Jianguo, 2018. "Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China," Energy, Elsevier, vol. 160(C), pages 184-191.
    3. Alhajj Ali, Salem & Tedone, Luigi & De Mastro, Giuseppe, 2013. "A comparison of the energy consumption of rainfed durum wheat under different management scenarios in southern Italy," Energy, Elsevier, vol. 61(C), pages 308-318.
    4. Ghasemi-Mobtaker, Hassan & Kaab, Ali & Rafiee, Shahin, 2020. "Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran," Energy, Elsevier, vol. 193(C).
    5. Abolfazl Nasseri, 2023. "Effects of tillage practices on wheat production using groundwater-based irrigation: multidimensional analysis of energy use, greenhouse gases emissions and economic parameters," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7047-7074, July.
    6. Morteza Zangeneh & Narges Banaeian & Sean Clark, 2021. "Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    7. Kazemi, Hossein & Bourkheili, Saeid Hassanpour & Kamkar, Behnam & Soltani, Afshin & Gharanjic, Kambiz & Nazari, Noor Mohammad, 2016. "Estimation of greenhouse gas (GHG) emission and energy use efficiency (EUE) analysis in rainfed canola production (case study: Golestan province, Iran)," Energy, Elsevier, vol. 116(P1), pages 694-700.
    8. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Applying DEA optimization approach for energy auditing in wheat cultivation under rice-wheat and cotton-wheat cropping systems in north-western India," Energy, Elsevier, vol. 181(C), pages 18-28.
    9. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    10. Jankowski, Krzysztof J. & Sokólski, Mateusz, 2021. "Spring camelina: Effect of mineral fertilization on the energy efficiency of biomass production," Energy, Elsevier, vol. 220(C).
    11. Soltani, Afshin & Rajabi, M.H. & Zeinali, E. & Soltani, Elias, 2013. "Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran," Energy, Elsevier, vol. 50(C), pages 54-61.
    12. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S. & Sharma, Sandeep, 2021. "Energy optimization in wheat establishment following rice residue management with Happy Seeder technology for reduced carbon footprints in north-western India," Energy, Elsevier, vol. 230(C).
    13. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).
    14. Budzyński, Wojciech Stefan & Jankowski, Krzysztof Józef & Jarocki, Marcin, 2015. "An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland," Energy, Elsevier, vol. 90(P2), pages 1272-1279.
    15. Dorward, Leejiah J., 2012. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? A comment," Food Policy, Elsevier, vol. 37(4), pages 463-466.
    16. Ujué Fresán & Maximino Alfredo Mejia & Winston J Craig & Karen Jaceldo-Siegl & Joan Sabaté, 2019. "Meat Analogs from Different Protein Sources: A Comparison of Their Sustainability and Nutritional Content," Sustainability, MDPI, vol. 11(12), pages 1-10, June.
    17. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Angela Zinnai & Alberto Pardossi, 2018. "A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    18. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    19. Susana G. Azevedo & Minelle E. Silva & João C. O. Matias & Gustavo P. Dias, 2018. "The Influence of Collaboration Initiatives on the Sustainability of the Cashew Supply Chain," Sustainability, MDPI, vol. 10(6), pages 1-29, June.
    20. Tjärnemo, Heléne & Södahl, Liv, 2015. "Swedish food retailers promoting climate smarter food choices—Trapped between visions and reality?," Journal of Retailing and Consumer Services, Elsevier, vol. 24(C), pages 130-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:136:y:2017:i:c:p:7-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.