IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v134y2017icp90-102.html
   My bibliography  Save this article

A variation focused cluster analysis strategy to identify typical daily heating load profiles of higher education buildings

Author

Listed:
  • Ma, Zhenjun
  • Yan, Rui
  • Nord, Natasa

Abstract

This paper presents a variation focused cluster analysis strategy to identify typical daily heating energy usage profiles of higher education buildings. Different from the existing cluster analysis studies which were primarily developed using Euclidean distance as the dissimilarity measure and tended to group the daily load profiles with similar magnitudes, Partitioning Around Medoids (PAM) clustering algorithm with Pearson Correlation Coefficient-based dissimilarity measure was used in this study to group the daily load profiles on the basis of the variation similarity. A comparison of the proposed strategy with a k-means cluster analysis with Euclidean distance as the dissimilarity measure was also performed. The performance of the proposed strategy was tested and evaluated using the three-year hourly heating energy usage data collected from 19 higher education buildings in Norway. The results demonstrated the effectiveness of the proposed strategy in identifying the typical daily energy usage profiles. The identified typical heating load profiles provided the information such as the peaks and troughs of the daily heating demand, daily high heating demand period and daily load variation. The identified profiles also helped to categorize multiple buildings into different groups in terms of the similar energy usage behaviors to support further energy efficiency initiatives.

Suggested Citation

  • Ma, Zhenjun & Yan, Rui & Nord, Natasa, 2017. "A variation focused cluster analysis strategy to identify typical daily heating load profiles of higher education buildings," Energy, Elsevier, vol. 134(C), pages 90-102.
  • Handle: RePEc:eee:energy:v:134:y:2017:i:c:p:90-102
    DOI: 10.1016/j.energy.2017.05.191
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217309878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christoph Flath & David Nicolay & Tobias Conte & Clemens Dinther & Lilia Filipova-Neumann, 2012. "Cluster Analysis of Smart Metering Data," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 4(1), pages 31-39, February.
    2. Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
    3. Brock, Guy & Pihur, Vasyl & Datta, Susmita & Datta, Somnath, 2008. "clValid: An R Package for Cluster Validation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i04).
    4. Gadd, Henrik & Werner, Sven, 2013. "Heat load patterns in district heating substations," Applied Energy, Elsevier, vol. 108(C), pages 176-183.
    5. Struyf, Anja & Hubert, Mia & Rousseeuw, Peter, 1997. "Clustering in an Object-Oriented Environment," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 1(i04).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bingtuan Gao & Xiaofeng Liu & Zhenyu Zhu, 2018. "A Bottom-Up Model for Household Load Profile Based on the Consumption Behavior of Residents," Energies, MDPI, vol. 11(8), pages 1-16, August.
    2. Yilmaz, S. & Chambers, J. & Patel, M.K., 2019. "Comparison of clustering approaches for domestic electricity load profile characterisation - Implications for demand side management," Energy, Elsevier, vol. 180(C), pages 665-677.
    3. Anders Rhiger Hansen & Daniel Leiria & Hicham Johra & Anna Marszal-Pomianowska, 2022. "Who Produces the Peaks? Household Variation in Peak Energy Demand for Space Heating and Domestic Hot Water," Energies, MDPI, vol. 15(24), pages 1-23, December.
    4. Rongheng Lin & Fangchun Yang & Mingyuan Gao & Budan Wu & Yingying Zhao, 2019. "AUD-MTS: An Abnormal User Detection Approach Based on Power Load Multi-Step Clustering with Multiple Time Scales," Energies, MDPI, vol. 12(16), pages 1-19, August.
    5. Wen, Xuanhao & Cao, Huajun & Li, Hongcheng & Zheng, Jie & Ge, Weiwei & Chen, Erheng & Gao, Xi & Hon, Bernard, 2022. "A dual energy benchmarking methodology for energy-efficient production planning and operation of discrete manufacturing systems using data mining techniques," Energy, Elsevier, vol. 255(C).
    6. Lei, Lei & Wu, Bing & Fang, Xin & Chen, Li & Wu, Hao & Liu, Wei, 2023. "A dynamic anomaly detection method of building energy consumption based on data mining technology," Energy, Elsevier, vol. 263(PA).
    7. Hong, Yejin & Yoon, Sungmin, 2022. "Holistic Operational Signatures for an energy-efficient district heating substation in buildings," Energy, Elsevier, vol. 250(C).
    8. Calikus, Ece & Nowaczyk, Sławomir & Sant'Anna, Anita & Gadd, Henrik & Werner, Sven, 2019. "A data-driven approach for discovering heat load patterns in district heating," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Li, Kehua & Ma, Zhenjun & Robinson, Duane & Ma, Jun, 2018. "Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering," Applied Energy, Elsevier, vol. 231(C), pages 331-342.
    10. Castillo, Victhalia Zapata & Boer, Harmen-Sytze de & Muñoz, Raúl Maícas & Gernaat, David E.H.J. & Benders, René & van Vuuren, Detlef, 2022. "Future global electricity demand load curves," Energy, Elsevier, vol. 258(C).
    11. Li, Kehua & Yang, Rebecca Jing & Robinson, Duane & Ma, Jun & Ma, Zhenjun, 2019. "An agglomerative hierarchical clustering-based strategy using Shared Nearest Neighbours and multiple dissimilarity measures to identify typical daily electricity usage profiles of university library b," Energy, Elsevier, vol. 174(C), pages 735-748.
    12. Li, Wenzhuo & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Cha, Seung Hyun & Wang, Shengwei, 2020. "A novel operation approach for the energy efficiency improvement of the HVAC system in office spaces through real-time big data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    13. Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
    14. Dong, Bing & Liu, Yapan & Fontenot, Hannah & Ouf, Mohamed & Osman, Mohamed & Chong, Adrian & Qin, Shuxu & Salim, Flora & Xue, Hao & Yan, Da & Jin, Yuan & Han, Mengjie & Zhang, Xingxing & Azar, Elie & , 2021. "Occupant behavior modeling methods for resilient building design, operation and policy at urban scale: A review," Applied Energy, Elsevier, vol. 293(C).
    15. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Fan, Cheng & Xiao, Fu & Zhao, Yang & Wang, Jiayuan, 2018. "Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data," Applied Energy, Elsevier, vol. 211(C), pages 1123-1135.
    17. Alexandra Märtz & Uwe Langenmayr & Sabrina Ried & Katrin Seddig & Patrick Jochem, 2022. "Charging Behavior of Electric Vehicles: Temporal Clustering Based on Real-World Data," Energies, MDPI, vol. 15(18), pages 1-26, September.
    18. Huang, Wenxin & Wang, Jianguo & Wang, Jianping & Zeng, Haiyan & Zhou, Mi & Cao, Jinxin, 2024. "EV charging load profile identification and seasonal difference analysis via charging sessions data of charging stations," Energy, Elsevier, vol. 288(C).
    19. Wang, Wei & Liu, Ke & Zhang, Muxing & Shen, Yuchi & Jing, Rui & Xu, Xiaodong, 2021. "From simulation to data-driven approach: A framework of integrating urban morphology to low-energy urban design," Renewable Energy, Elsevier, vol. 179(C), pages 2016-2035.
    20. Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
    21. Paola Marrone & Paola Gori & Francesco Asdrubali & Luca Evangelisti & Laura Calcagnini & Gianluca Grazieschi, 2018. "Energy Benchmarking in Educational Buildings through Cluster Analysis of Energy Retrofitting," Energies, MDPI, vol. 11(3), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuwen You & Zhonghua Wang & Zhihao Liu & Chunmei Guo & Bin Yang, 2024. "Load Prediction of Regional Heat Exchange Station Based on Fuzzy Clustering Based on Fourier Distance and Convolutional Neural Network–Bidirectional Long Short-Term Memory Network," Energies, MDPI, vol. 17(16), pages 1-19, August.
    2. Calikus, Ece & Nowaczyk, Sławomir & Sant'Anna, Anita & Gadd, Henrik & Werner, Sven, 2019. "A data-driven approach for discovering heat load patterns in district heating," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Patrick Zschech & Kai Heinrich & Raphael Bink & Janis S. Neufeld, 2019. "Prognostic Model Development with Missing Labels," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 327-343, June.
    4. Hendrik Hilpert & Johann Kranz & Matthias Schumann, 2013. "Leveraging Green IS in Logistics," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 5(5), pages 315-325, October.
    5. Østergaard, Dorte Skaarup & Svendsen, Svend, 2018. "Experience from a practical test of low-temperature district heating for space heating in five Danish single-family houses from the 1930s," Energy, Elsevier, vol. 159(C), pages 569-578.
    6. Wang, Peng & Sipilä, Kari, 2016. "Energy-consumption and economic analysis of group and building substation systems — A case study of the reformation of the district heating system in China," Renewable Energy, Elsevier, vol. 87(P3), pages 1139-1147.
    7. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    8. Wang, Weilong & Li, Hailong & Guo, Shaopeng & He, Shiquan & Ding, Jing & Yan, Jinyue & Yang, Jianping, 2015. "Numerical simulation study on discharging process of the direct-contact phase change energy storage system," Applied Energy, Elsevier, vol. 150(C), pages 61-68.
    9. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    10. Gianluca Trotta & Kirsten Gram-Hanssen & Pernille Lykke Jørgensen, 2020. "Heterogeneity of Electricity Consumption Patterns in Vulnerable Households," Energies, MDPI, vol. 13(18), pages 1-17, September.
    11. Sara Månsson & Kristin Davidsson & Patrick Lauenburg & Marcus Thern, 2018. "Automated Statistical Methods for Fault Detection in District Heating Customer Installations," Energies, MDPI, vol. 12(1), pages 1-18, December.
    12. Tomasz Szul & Krzysztof Nęcka & Stanisław Lis, 2021. "Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement," Energies, MDPI, vol. 14(7), pages 1-16, March.
    13. Kauffmann, Albrecht, 2012. "Delineation of City Regions Based on Commuting Interrelations: The Example of Large Cities in Germany," IWH Discussion Papers 4/2012, Halle Institute for Economic Research (IWH).
    14. Ahmad, Muhammad Waseem & Mourshed, Monjur & Rezgui, Yacine, 2018. "Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression," Energy, Elsevier, vol. 164(C), pages 465-474.
    15. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    16. Molina-Solana, Miguel & Ros, María & Ruiz, M. Dolores & Gómez-Romero, Juan & Martin-Bautista, M.J., 2017. "Data science for building energy management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 598-609.
    17. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    18. Zhang, Fan & Bales, Chris & Fleyeh, Hasan, 2021. "Night setback identification of district heat substations using bidirectional long short term memory with attention mechanism," Energy, Elsevier, vol. 224(C).
    19. Ana Alina Tudoran, 2022. "A machine learning approach to identifying decision-making styles for managing customer relationships," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 351-374, March.
    20. Wu, Han-Ming, 2011. "On biological validity indices for soft clustering algorithms for gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1969-1979, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:134:y:2017:i:c:p:90-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.