IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v133y2017icp652-665.html
   My bibliography  Save this article

Modeling of passive direct ethanol fuel cells

Author

Listed:
  • Oliveira, V.B.
  • Pereira, J.P.
  • Pinto, A.M.F.R.

Abstract

Direct ethanol fuel cells (DEFCs) are promising substitute power sources for compact and mobile applications. Passive feed systems are especially desirable because they are less expensive, more compact and simpler than the active systems. Aiming for the introduction of passive DEFCs in the market, this work describes a steady-state and one-dimensional model considering the electrochemical reactions and all the transport phenomena (heat and mass transport) occurring in a passive feed DEFC. This model can be used to estimate the concentration profiles of the different chemical species, as well as, the temperature distribution on the different layers. Moreover, the model can accurately predict the influence of the operating conditions and design parameters on the ethanol and water crossover rate. The model predictions for the polarization curves are successfully compared with recent published data for different ethanol concentrations. The current model is rapidly implemented and can be a useful tool to optimize the performance of a passive DEFC.

Suggested Citation

  • Oliveira, V.B. & Pereira, J.P. & Pinto, A.M.F.R., 2017. "Modeling of passive direct ethanol fuel cells," Energy, Elsevier, vol. 133(C), pages 652-665.
  • Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:652-665
    DOI: 10.1016/j.energy.2017.05.152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217309374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismail, A. & Kamarudin, S.K. & Daud, W.R.W. & Masdar, S. & Hasran, U.A., 2018. "Development of 2D multiphase non-isothermal mass transfer model for DMFC system," Energy, Elsevier, vol. 152(C), pages 263-276.
    2. Ghadamian, Hossein & Moghadasi, Meisam & Baghban yousefkhani, Mojtaba & Javaheri, Masoumeh & Massoudi, Abouzar & Amirian, Hajar, 2024. "Experimental investigation on a novel empirical parameter for simultaneous analysis of the temperature and concentration effects on fuel utilization coefficient of direct ethanol fuel cell," Renewable Energy, Elsevier, vol. 224(C).
    3. Dabiri, Soroush & Hashemi, Mohammadreza & Rahimi, Mohammadfazel & Bahiraei, Mehdi & Khodabandeh, Erfan, 2018. "Design of an innovative distributor to improve flow uniformity using cylindrical obstacles in header of a fuel cell," Energy, Elsevier, vol. 152(C), pages 719-731.
    4. Sánchez-Monreal, Juan & García-Salaberri, Pablo A. & Vera, Marcos, 2019. "A mathematical model for direct ethanol fuel cells based on detailed ethanol electro-oxidation kinetics," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
    6. Wu, Horng-Wen & Lin, Ke-Wei, 2019. "Hydrogen-rich syngas production by reforming of ethanol blended with aqueous urea using a thermodynamic analysis," Energy, Elsevier, vol. 166(C), pages 541-551.
    7. Hosseini, Mir Ghasem & Mahmoodi, Raana & Daneshvari-Esfahlan, Vahid, 2018. "Ni@Pd core-shell nanostructure supported on multi-walled carbon nanotubes as efficient anode nanocatalysts for direct methanol fuel cells with membrane electrode assembly prepared by catalyst coated m," Energy, Elsevier, vol. 161(C), pages 1074-1084.
    8. Maria H. de Sá & Alexandra M. F. R. Pinto & Vânia B. Oliveira, 2022. "Passive Small Direct Alcohol Fuel Cells for Low-Power Portable Applications: Assessment Based on Innovative Increments since 2018," Energies, MDPI, vol. 15(10), pages 1-48, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:133:y:2017:i:c:p:652-665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.