IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v131y2017icp92-97.html
   My bibliography  Save this article

Development of contact pressure distribution of PEM fuel cell's MEA using novel clamping mechanism

Author

Listed:
  • Alizadeh, E.
  • Ghadimi, M.
  • Barzegari, M.M.
  • Momenifar, M.
  • Saadat, S.H.M.

Abstract

Clamping mechanisms have significant effect on the performance of polymer electrolyte membrane (PEM) fuel cells. In this paper, PEM fuel cell with new clamping mechanism is designed to study the contact pressure distribution over the active area of PEM fuel cell's membrane electrode assembly (MEA). The clamping pressure is pneumatically exerted on the PEM fuel cell assembly. A comparison between the conventional and new clamping mechanism is carried out with simulation, and the numerical results are validated against experimental investigation performed in the fuel cell technology research laboratory. The experimental results are gathered using embedded pressure measurement films in the designed single cell. The results achieved via finite element method are in good agreement with experimental results. It is concluded that the contact pressure distribution of MEA for the new clamping mechanism is more uniform than the conventional one.

Suggested Citation

  • Alizadeh, E. & Ghadimi, M. & Barzegari, M.M. & Momenifar, M. & Saadat, S.H.M., 2017. "Development of contact pressure distribution of PEM fuel cell's MEA using novel clamping mechanism," Energy, Elsevier, vol. 131(C), pages 92-97.
  • Handle: RePEc:eee:energy:v:131:y:2017:i:c:p:92-97
    DOI: 10.1016/j.energy.2017.05.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217307934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, R. & Ren, Y.S. & Lin, X.W. & Jiang, Z.H. & Yang, Z. & Chang, Y.T., 2017. "Investigation of the internal behavior in segmented PEMFCs of different flow fields during cold start process," Energy, Elsevier, vol. 123(C), pages 367-377.
    2. Kim, Jintae & Kim, Minjin & Kang, Taegon & Sohn, Young-Jun & Song, Taewon & Choi, Kyoung Hwan, 2014. "Degradation modeling and operational optimization for improving the lifetime of high-temperature PEM (proton exchange membrane) fuel cells," Energy, Elsevier, vol. 66(C), pages 41-49.
    3. Taymaz, Imdat & Benli, Merthan, 2010. "Numerical study of assembly pressure effect on the performance of proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(5), pages 2134-2140.
    4. Chien, Chi-Hui & Hu, Yao-Lun & Su, Ting-Hsuan & Liu, Hsuan-Ting & Wang, Chung-Ting & Yang, Ping-Feng & Lu, Ying-Xu, 2016. "Effects of bolt pre-loading variations on performance of GDL in a bolted PEMFC by 3-D FEM analysis," Energy, Elsevier, vol. 113(C), pages 1174-1187.
    5. Barzegari, Mohammad M. & Alizadeh, Ebrahim & Pahnabi, Amir H., 2017. "Grey-box modeling and model predictive control for cascade-type PEMFC," Energy, Elsevier, vol. 127(C), pages 611-622.
    6. Ravichandran, S. & Venkatkarthick, R. & Sankari, A. & Vasudevan, S. & Jonas Davidson, D. & Sozhan, G., 2014. "Platinum deposition on the nafion membrane by impregnation reduction using nonionic surfactant for water electrolysis – An alternate approach," Energy, Elsevier, vol. 68(C), pages 148-151.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouziane, Khadidja & Khetabi, El Mahdi & Lachat, Rémy & Zamel, Nada & Meyer, Yann & Candusso, Denis, 2020. "Impact of cyclic mechanical compression on the electrical contact resistance between the gas diffusion layer and the bipolar plate of a polymer electrolyte membrane fuel cell," Renewable Energy, Elsevier, vol. 153(C), pages 349-361.
    2. Zhou, Zihan & Qiu, Diankai & Zhai, Shuang & Peng, Linfa & Lai, Xinmin, 2020. "Investigation of the assembly for high-power proton exchange membrane fuel cell stacks through an efficient equivalent model," Applied Energy, Elsevier, vol. 277(C).
    3. Cha, Dowon & Yang, Wonseok & Kim, Yongchan, 2019. "Performance improvement of self-humidifying PEM fuel cells using water injection at various start-up conditions," Energy, Elsevier, vol. 183(C), pages 514-524.
    4. Song, Ke & Wang, Yimin & Ding, Yuhang & Xu, Hongjie & Mueller-Welt, Philip & Stuermlinger, Tobias & Bause, Katharina & Ehrmann, Christopher & Weinmann, Hannes W. & Schaefer, Jens & Fleischer, Juergen , 2022. "Assembly techniques for proton exchange membrane fuel cell stack: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Han, Chaoling & Chen, Zhenqian, 2021. "Study on the synergism of thermal transport and electrochemical of PEMFC based on N, P co-doped graphene substrate electrode," Energy, Elsevier, vol. 214(C).
    6. Atyabi, Seyed Ali & Afshari, Ebrahim & Wongwises, Somchai & Yan, Wen-Mon & Hadjadj, Abdellah & Shadloo, Mostafa Safdari, 2019. "Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances," Energy, Elsevier, vol. 179(C), pages 490-501.
    7. Guan, Dong & Pan, Biyu & Chen, Zhen & Li, Jing & Shen, Hui & Pang, Huan, 2023. "Quantitative modeling and bio-inspired optimization the clamping load on the bipolar plate in PEMFC," Energy, Elsevier, vol. 263(PD).
    8. Bhosale, Amit C. & Rengaswamy, Raghunathan, 2019. "Interfacial contact resistance in polymer electrolyte membrane fuel cells: Recent developments and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Zhiming Zhang & Jun Zhang & Yapeng Shang & Tong Zhang, 2022. "Study on the Optimal Cross-Sectional Shapes of the PEMFC Endplates by Using a Moment of Inertia and 3D FEM Models," Sustainability, MDPI, vol. 14(19), pages 1-15, October.
    10. Gui Ren & Yanfeng Xing & Juyong Cao & Ying Wang & Linfa Peng & Xuelong Miao, 2023. "Study of Contact Pressure Distribution in Bolted Encapsulated Proton Exchange Membrane Fuel Cell Membrane Electrode Assembly," Energies, MDPI, vol. 16(18), pages 1-18, September.
    11. Giacoppo, Giosuè & Hovland, Scott & Barbera, Orazio, 2019. "2 kW Modular PEM fuel cell stack for space applications: Development and test for operation under relevant conditions," Applied Energy, Elsevier, vol. 242(C), pages 1683-1696.
    12. Zhiming Zhang & Jun Zhang & Tong Zhang, 2022. "Endplate Design and Topology Optimization of Fuel Cell Stack Clamped with Bolts," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    13. Zhiming Zhang & Hui Ren & Song Hu & Xinfeng Zhang & Tong Zhang & Jiaming Zhou & Shangfeng Jiang & Tao Yu & Bo Deng, 2022. "Arrangement of Belleville Springs on Endplates Combined with Optimal Cross-Sectional Shape in PEMFC Stack Using Equivalent Beam Modeling and FEA," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    14. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    15. Hong, Po & Xu, Liangfei & Li, Jianqiu & Ouyang, Minggao, 2017. "Modeling of membrane electrode assembly of PEM fuel cell to analyze voltage losses inside," Energy, Elsevier, vol. 139(C), pages 277-288.
    16. Xing, Shuang & Zhao, Chen & Liu, Wei & Zou, Jiexin & Chen, Ming & Wang, Haijiang, 2021. "Effects of bolt torque and gasket geometric parameters on open-cathode polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 303(C).
    17. Barzegari, M.M. & Ghadimi, M. & Momenifar, M., 2020. "Investigation of contact pressure distribution on gas diffusion layer of fuel cell with pneumatic endplate," Applied Energy, Elsevier, vol. 263(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Movahedi, M. & Ramiar, A. & Ranjber, A.A., 2018. "3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field," Energy, Elsevier, vol. 142(C), pages 617-632.
    2. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
    3. Guan, Dong & Pan, Biyu & Chen, Zhen & Li, Jing & Shen, Hui & Pang, Huan, 2023. "Quantitative modeling and bio-inspired optimization the clamping load on the bipolar plate in PEMFC," Energy, Elsevier, vol. 263(PD).
    4. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    6. Song, Ke & Wang, Yimin & Ding, Yuhang & Xu, Hongjie & Mueller-Welt, Philip & Stuermlinger, Tobias & Bause, Katharina & Ehrmann, Christopher & Weinmann, Hannes W. & Schaefer, Jens & Fleischer, Juergen , 2022. "Assembly techniques for proton exchange membrane fuel cell stack: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    8. Poornesh, K.K. & Cho, Chongdu & Kim, Do-Young & Tak, Yongsug, 2010. "Effect of gas-diffusion electrode material heterogeneity on the structural integrity of polymer electrolyte fuel cell," Energy, Elsevier, vol. 35(12), pages 5241-5249.
    9. Wang, Jiatang & Zhang, Houcheng & Cai, Weiwei & Ye, Weiqiang & Tong, Yiheng & Cheng, Hansong, 2023. "Effect of varying rib area portions on the performance of PEM fuel cells: Insights into design and optimization," Renewable Energy, Elsevier, vol. 217(C).
    10. Yousefi Tehrani, Mehran & Mirfarsi, Seyed Hesam & Rowshanzamir, Soosan, 2022. "Mechanical stress and strain investigation of sulfonated Poly(ether ether ketone) proton exchange membrane in fuel cells: A numerical study," Renewable Energy, Elsevier, vol. 184(C), pages 182-200.
    11. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    12. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    13. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    14. Beltrán-Gastélum, M. & Salazar-Gastélum, M.I. & Félix-Navarro, R.M. & Pérez-Sicairos, S. & Reynoso-Soto, E.A. & Lin, S.W. & Flores-Hernández, J.R. & Romero-Castañón, T. & Albarrán-Sánchez, I.L. & Para, 2016. "Evaluation of PtAu/MWCNT (Multiwalled Carbon Nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 109(C), pages 446-455.
    15. Fischer, David & Kaufmann, Florian & Hollinger, Raphael & Voglstätter, Christopher, 2018. "Real live demonstration of MPC for a power-to-gas plant," Applied Energy, Elsevier, vol. 228(C), pages 833-842.
    16. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    17. Zhang, Caizhi & Liu, Zhitao & Zhang, Xiongwen & Chan, Siew Hwa & Wang, Youyi, 2016. "Dynamic performance of a high-temperature PEM (proton exchange membrane) fuel cell – Modelling and fuzzy control of purging process," Energy, Elsevier, vol. 95(C), pages 425-432.
    18. Lee, Won-Yong & Kim, Minjin & Sohn, Young-Jun & Kim, Seung-Gon, 2016. "Power optimization of a combined power system consisting of a high-temperature polymer electrolyte fuel cell and an organic Rankine cycle system," Energy, Elsevier, vol. 113(C), pages 1062-1070.
    19. Yang, Zirong & Jiao, Kui & Wu, Kangcheng & Shi, Weilong & Jiang, Shangfeng & Zhang, Longhai & Du, Qing, 2021. "Numerical investigations of assisted heating cold start strategies for proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 222(C).
    20. Zhang, S. & Reimer, U. & Beale, S.B. & Lehnert, W. & Stolten, D., 2019. "Modeling polymer electrolyte fuel cells: A high precision analysis," Applied Energy, Elsevier, vol. 233, pages 1094-1103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:131:y:2017:i:c:p:92-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.